

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: CE467

Course Name: HIGHWAY PAVEMENT DESIGN

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Drawing cross section-	3
		Function of layers	4
	b)	Graph	3
		Explain the steps of Rothfutch method of proportioning of soil	5
2	a)	Six properties	3
		Testing (CBR)	4
	b)	Burmister's assumptions (4points) and explain $(4*1+4=8)$	8
3	a)	Concept of ESWL	4
		explanation with figure	4
	b)	Pressure $p=7 \text{ kg/cm}^2$, radius=16cm, pavement thickness, z=50cm, E _s =1000	
		kg/cm ²	7

Using deflection equation, $\Delta = \frac{3pa^2}{2E(a^2+z^2)^{0.5}} = 0.0512$ cm

PART B

Answer any two full questions, each carries 15 marks.

4	a)	Concept	2
		Advantages	1
		Disadvantages	1
	b)	$T = \{ (3Pmn/2\Pi e^{*}deflection)^{2} - a^{2} \} \}^{0.5} (E/E_{p})^{1/3} = 32.3 \text{ cm} (2 \text{ marks})$	2
		Assume thickness of wearing course $= 5 \text{ cm}$	1
		Calculate remaining thickness = 27.3 cm	1
		Convert this thickness to equivalent thickness t _b	2
		$t_b = 27.3 * (E_p/E_b)^{1/3} = 37 \text{ cm} (3 \text{ marks})$	1
		Assume thickness of base as 15 cm	2
		$t_{sb} = (t_b$ -assumed thickness of base) $(E_b/E_{sb})^{1/3} = 28$ cm (2 marks)	

G1155

5

6

a)	Concept, theory and procedure	7
b)	Factors	4
	Assumptions	4
a)	Definitions 3 terms	6
b)	Critical combination of stresses	
	List	1
	explanation	2
c	Radius of relative stiffness, 1=73.79 cm	
	$\frac{L_X}{l} = 13.55 \longrightarrow C_X = 1$	
	$\frac{L_y}{l} = 5.08 \longrightarrow C_y = 0.72$	2
	Warping Stress at interior = $20.4 \text{ kg/} \text{cm}^2$	2
	Warping Stress at edge = $18 \text{ kg/} \text{cm}^2$	Z
	Warping Stress at corner= 6.36 kg/ <i>cm</i> ²	2

PART C

Answer any two full questions, each carries 20 marks.

7	a)	(a) Dummy Joint	5
		(b) Contraction joint with dowel bar	5
		(c)Contraction joint without dowel bar	5
	b)	Functions	5
8	a)	Detailed step by step procedure	8
	b)	Sc=0.8kg/c	7
		$W=2400 kg/m^{3}$	
		f=1.2	
		$Lc=(2*0.8*10^4)/(2400*1.2)=5.55m$	
	c)	Sketch	2
		Explanation	3
9	a)	Structural evaluation concept	2
		Plate load test	5
		BBD test	5
	b)	Structural requirements	4
		Functional requirements	4
