

Pages 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: CE405

Course Name: ENVIRONMENTAL ENGINEERING-I

Max. Marks: 100

1

2

Duration: 3 Hours

PART A

	Answer any two full questions, each carries 15 marks.	Marks
a)	List the various sources with explanation 1 mark each.	(5)
b)	Explanation -3 marks, design periods of components -2 marks.	(5)
c)	Explanation – 3 marks	(5)
	Figure of daily variation in demand- 2 marks	
a)	Description – 3 marks	(5)
	Figure – 2 marks	

b) The computations about increment, % increment and incremental increase per (10) decade are arranged in the table given below:

Year	Population	Increment per decade	% increment per decade	Incremental increase
1941	12500			
1951	17000	4500	36.00	
1961	27000	10000	58.82	+5500
1971	42000	15000	55.56	+5000
1981	58000	16000	38.10	+1000
1991	68000	10000	17.24	-6000
2001	74000	6000	8.82	-4000
Total		61500	214.54	+1500
Average		10250	35.76	300

In the above table, percentage increase for the first decade (1941 to 1951)

 $= \frac{17000-12500}{12500} \quad X \ 100 = \frac{4500}{12500} X \ 100 = 36\%$

Similarly, % increment for other decades has been calculated. *(a) Arithmetical Increase Method*

Pn= P + n.C Where, P = Population in 2001 = 74000 n = number of decades = $\frac{2021 - 2001}{10} = 2$ C = average increase per decade = 10250

G1055

G1055

Pages 3

(5)

 $\therefore \qquad P_{2021} = 74000 + 2 X 10250 = 94500$

(b) Geometrical Increase Method

$$\mathbf{P}_{n} = \mathbf{P} \left(1 + \frac{\mathbf{I}_{\mathbf{G}}}{\mathbf{100}}\right)^{n}$$

Where, I_G = geometric mean (%) = = t $\sqrt{Ig_1 \times Ig_2 \times ...Ig_t}$ = 29.67%

P = Present population = 74000

n = number of decades = $\frac{2021-2001}{10} = 2$

:. $P_{2021} = 74000 (1+29.67/100)^2 = 1,24,425$

(c) Incremental Increase Method

Population after nth decade is $P_n = P + n d + \frac{n(n+1)}{2}r$

Where, $Pn = Population after n^{th} decade = P_{2021}$

P = Present population = 74000

d = Average increase = 10250 (from table)

r = Incremental increase = 300 (from table)

$$\therefore \qquad P_{2021} = 74000 + 2 \times 10250 + \frac{2(2+1)}{2} \times 300$$
$$= 95,400$$

3 a) Any 10 parameters – each carrying 1/2 mark. (5)

- b) Two intake figure 2 marks, explanation 3 marks (5)
- c) Any five chemical characteristics 1 mark each

PART B

Answer any two full questions, each carries 15 marks.

4	a)	On thorough mixing of coagulants in raw water – floc formation – colloidal particles are attracted and absorbed by the flocs- bigger sized particle – easy settlement. Alum , 2) copperas, 3) chlorinated copperas, 4) sodium aluminate	(5)
	b)	Maximum demand – 1 mark	(10)
		Total quantity of water to be treated in $6 \text{ hr} - 1 \text{ mark}$	
		Capacity of tank- 1 mark	
		Length of tank- 2 marks	

Width of tank-1 mark

API ABDU TECHNO UNIVE	il kalam logical rsity
K	-T T

G	105	5	Pages 3
		Depth of tank with free board – 1 mark	U
		Check – 1 mark	
		Sketch – 2 marks	
5	a)	Max demand – 1 mark	(15)
		Design of flash mixer (DT: $30 \text{ s} - 2 \text{ min}$)– 3 marks	
		Design of flocculator (DT : $20 \text{ min} - 60 \text{ min}$) – 3 marks	
		Design of sedimentation tank - 3 marks	
		Check for surface loading – 1 mark	
		Sketch – 4 marks	
6	a)	Explain four actions – 1 mark each.	(4)
	b)	Fig. -2 marks, explanation -4 marks.	(6)
	c)	Any 5 comparisons – 1 mark each.	(5)
		APLARDED KAFAM	
		PART C	
		Answer any two full questions, each carries 20 marks.	

7	a)	Requirements (4 marks)	(4)
	b)	Theory of chlorination with equations (6 marks)	(6)
	c)	Types – Need – Explanation (10 marks)	(10)
8	a)	Ion exchange - Explanation – 4 marks, Equation & Figure – 3 marks,	(10)
		Advantages – 3 marks.	
	b)	Lime Soda process-Explanation (5), Equation (3) Adv & Disadvantages (2)	(10)
9	a)	Any 5 points such as pressure head, economic and maintenance, degree of	(5)
		purity, safe against future contamination, water tight and leakage.	
	b)	1. Dead end system, 2. Grid iron system, 3. Circular or ring system, 4.Radial	(10)
		system. With figures	

c) Explanation with figure -2 marks, conditions for parallel and series -3 marks (5)
