Reg No.:
Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019
Course Code: EE407

Course Name: DIGITAL SIGNAL PROCESSING

Max. Marks: 100

PART A
 Answer all questions, each carries 5 marks.

Marks
1 What is the need of zero padding? Obtain linear convolution of the sequence $x(n)=\{1,2,3\}, h(n)=\{-1,-2\}$ using circular convolution.
2 Realize the system function using minimum number of multipliers

$$
\begin{equation*}
H(z)=\left(1+Z^{-1}\right)\left(1+\frac{1}{2} Z^{-1}+\frac{1}{2} Z^{-2}+Z^{-3}\right) \tag{5}
\end{equation*}
$$

For the analog transfer function $\mathrm{H}(\mathrm{s})=\frac{10}{\left(s^{2}+7 s+10\right)}$, determine $\mathrm{H}(\mathrm{z})$ using impulse invariant method for $\mathrm{T}=0.2 \mathrm{sec}$
4 Compare Hamming and Barlett windows with required equations.
5 Express the fraction $7 / 8$ and $-7 / 8$ in sign magnitude, 1's complement and 2's complement.
6 What is zero input limit cycle oscillation?
What are the different buses of TMS 320 C24x processor and their functions?
8 Define any 5 arithmetic and logic instructions in TMS 320 C24x processor.

PART B

Answer any two full questions, each carries 10 marks.
9 Determine the 8-point DFT of the following sequence.
$\mathrm{x}(\mathrm{n})=\{0.5,0.5,0.5,0.5,0,0,0,0\}$. Using radix-2 decimation in time FFT algorithm.

10 a) Perform the linear convolution of the following sequence by Overlap save method. $x(n)=\{1,2,3,-1,-2,-3,4,5,6\}$ and $h(n)=\{2,1,-1\}$
b) Obtain direct form II realization of a system described by,

$$
\begin{equation*}
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)+\frac{1}{2} x(n-1) \tag{5}
\end{equation*}
$$

11 Obtain the cascade and parallel realizations for the system function

$$
H(Z)=\frac{1+\frac{1}{4} Z^{-1}}{\left(1+\frac{1}{2} Z^{-1}\right)\left(1+\frac{1}{2} Z^{-1}+\frac{1}{4} Z^{-2}\right)}
$$

PART C

Answer any two full questions, each carries 10 marks.
12 Design a digital Butterworth filter satisfying the constraints:

$$
\begin{align*}
& 0.9 \leq\left|H\left(e^{j w}\right)\right| \leq 1 \quad \text { for } 0 \leq w \leq \pi / 2 \tag{10}\\
& \left|H\left(e^{j w}\right)\right| \leq 0.2 \quad \text { for } 3 \pi / 4 \leq \mathrm{w} \leq \pi,
\end{align*}
$$

with $\mathrm{T}=1 \mathrm{sec}$ using bilinear transformation.
13 a) Write down the transfer function $\mathrm{H}(\mathrm{s})$ of a $2^{\text {nd }}$ order Chebyshev low pass filter with 3 dB cut-off frequency of $1 \mathrm{rad} / \mathrm{sec}$. Determine $\mathrm{H}(\mathrm{z})$ by using approximation of derivative method with a sampling interval of 1 sec .
b) Compare IIR and FIR filters.

14 Design a high pass filter with a frequency response

$$
\begin{align*}
\mathrm{H}\left(e^{j w}\right) & =1, \frac{\pi}{6} \leq|w| \leq \pi \tag{10}\\
& =0 \quad, \text { otherwise }
\end{align*}
$$

using Hanning window. Take $\mathrm{N}=7$

PART D

Answer any two full questions, each carries 10 marks.

15 a) Draw the product quantization noise model of a second order IIR system.
b) Two first order filters are connected in cascade whose system functions of the individual sections are $H_{1}(z)=1 /\left(1-0.5 z^{-1}\right)$ and $H_{2}(z)=1 /\left(1-0.6 z^{-1}\right)$. Determine overall output noise power.

16 a) Obtain the limit cycle behaviour of the system described by $y(n)=Q[a y(n-1)]+x(n)$, where $y(n)$ is the output of the filter and $Q[$.$] is the$ rounded operation. Assume $a=\frac{7}{8}, x(0)=\frac{3}{4} \& x=0$, for $n>0$ choose 4 bit sign magnitude.
b) What are the functions of TREG and PREG in TMS 320 C 24 x processor?

17 Draw and describe the functional block diagram of TMS 320 C24x processor.

