Re	eg No	Name:	_	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019		
		Course Code: EC370		
		Course Name:Digital Image Processing		
M	Max. Marks: 100 Duration: 3			
		PART A Answer any two full questions, each carries 15 marks	Marks	
1	a)	Discuss the concepts of Adjacency, Connectivity, Regions and Boundaries among	(8)	
		pixels in a digital image		
	b)	State and prove convolution property of DFT	(7)	
2	a)	Discuss the conceptual relationship between the RGB and HSI colour models with	(8)	
		neat sketches.	(-)	
	b)	Perform KL transform of the following matrix	(7)	
		$\begin{bmatrix} 4 & -2 \end{bmatrix}$		
		$\mathbf{x} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$		
3	a)	Discuss 2-D sampling theory . How is an image reconstructed from its samples ?	(10)	
	b)	What is block toeplitz matrix? Give an example	(5)	
		PART B		
		Answer any two full questions, each carries 15 marks		
4	a)	Explain the mechanisms involved in spatial filtering with suitable diagrams?	(8)	
	b)	Explain how a degraded image can be restored using an inverse filter. Explain its	(7)	
		limitations.		
5	a)	What are the advantages of filtering in frequency domain?	(5)	
	b)	Explain constrained and unconstrained Restoration method	(10)	
6	a)	Describe about histogram processing in images. with example.	(8)	
	b)	Explain in detail about minimum mean square error filtering.	(7)	

PART C

Answer any two full questions, each carries 20 marks

7	a)	Utilise Hough transform for global processing	(10)
	b)	Discuss Vector quantization.	(10)

8	a)	Define k-means clustering. Outline the algorithm for k-means clustering.	(10)
	b)	Explain the need for image compression.	(5)
	c)	Is the code {0,01,11} uniquely decodable ? Give reasons.	(5)
9	a)	How can edges be detected using second order derivatives?	(10)
	b)	Explain the analytics of Arithmetic Coding based Compression.	(10)

F