Reg No.:		D.: Name:	
	SE	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY VENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 20	19
		Course Code: AE407	
		Course Name: DIGITAL CONTROL SYSTEM	
M	ax. I	Marks: 100 Duration: 3	Hours
		PART A	
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	With the help of a neat block diagram, explain the basic elements of a digital	(10)
		control system. Mention any one example and explain each block.	
	b)	Write any five advantages of digital control over analog control system.	(5)
2	a)	Derive the transfer function of Zero Order Hold from its impulse response.	(5)
	b)	Find the cascaded open loop z transfer function, $G_{ZAS}(z)$ for the cruise control	(10)
		system for the vehicle, where u is the input force, v is the velocity of the vehicle,	
		and <i>b</i> is the viscous friction coefficient. Given, $G(s) = \frac{K}{\tau s + 1}$	
3	a)	Find the inverse Z transform of $X(z) = \frac{z^2}{(z-1)(z-0.5)^2}$	(5)
	b)	A DSP system is described by the following difference equation:	(10)
		y(k) + 0.1y(k-1) - 0.2y(k-2) = x(k) + x(k-1)	
		Determine the response $y(k)$ for the input $x(k) = \delta(k)$	
PART B Answer any two full questions, each carries 15 marks.			
4	a)	For the analog system $G(s) = \frac{10(s+2)}{s(s+5)}$ with a sampling period of 0.05sec,	

- (i) Obtain the pulse transfer function in z for the system with DAC and ADC. (5)
- (ii) Determine the impulse response of the system with sampled output and (5) analog input.
- b) Derive the Pulse transfer function of the system shown below. (5)

G192072

Pages:2

- 5 a) Briefly explain the concept of stability of a system in z-plane. (5)
 - b) Determine the stable range of parameter *a* using Jury's stability test, for the (10) closed loop unity feedback system with $G(z) = \frac{1.2(z+0.1)}{(z-a)(z-0.9)}$

6 For the system
$$G(z) = \frac{0.4(z+0.2)}{(z-1)(z-0.1)}$$
 with unity feedback, find the (15)

- (i) Position error constant
- (ii) Velocity error constant
- (iii)Acceleration error constant

PART C

Answer any two full questions, each carries 20 marks.

7 For the general discrete time transfer function

$$G(z) = \frac{Y(z)}{U(z)} = \frac{\beta_0 z^m + \beta_1 z^{m-1} + \dots + \beta_m}{z^n + \alpha_1 z^{n-1} + \dots + \alpha_n}, \ m = n$$

- (i) Derive the state and output equations in observable canonical form. (10)
- (ii) Draw the block diagram with the unit delay blocks for the observable canonical form. (5)
- (iii) Also write the matrices A, B, C and D in terms of α and β . (5)
- 8 a) Determine the discrete time state equation and output equation for the continuous (10) time system given: (when T=1sec) $G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s(s+2)}$
 - b) Derive the expression for state transition matrix $\phi(k)$ using z-transform method. (10)
- 9 a) Investigate the controllability and observability of the system given below after (10) forming the controllability and observability matrix.

$$x(k+1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \ ; \ y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$$

b) The plant of a regulator system is given below. The system uses the state (10) feedback control u = -Kx. Using the pole placement method, determine the state feedback gain matrix K so that the system will have the eigen values at $-2 \pm j4$ and -10

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_{****}$$