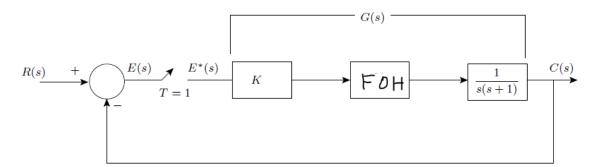

(10)

Reg No.:		Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019	
		Course Code: AE407 Course Name: -DIGITAL CONTROL SYSTEM	
Max. Marks: 100 Duration:		Hours	
		PART A Answer any two full questions, each carries 15 marks.	Marks
1 a	ι)	What are the merits and demerits of digital control system?	(3)
b))	With suitable timing diagram explain the following characteristics of a sample and hold device.(i) Acquisition time (ii) Aperture time (iii) Settling time	(7)
с	:)	Obtain the expression for the transfer function of a polygonal hold system.	(5)
2		With suitable diagrams explain how data reconstruction is done in zero order hold and first order hold. Derive transfer functions for each.	(15)
3 a	ι)	Find the inverse z transform of $X(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$	(6)
b))	Describe the mapping of the following locus from s-plane to z-plane	(9)

- i. Constant damping loci
- ii. Constant frequency loci
- iii. Constant damping ratio loci

PART B Answer any two full questions, each carries 15 marks.


4 a) Obtain the Pulse transfer function of the given closed loop system.

- b) Derive the expression for pulse transfer function of an LTI system with sampled data (5) input
- 5 Determine the pulse transfer function of the closed loop system given below for a (15)

(5)

sampling time of 1s and open loop gain K=1.

- 6 a) What do you mean by gain margin and phase margin? Explain
 - b) Derive the expression for acceleration error constant and velocity error constant of a Type (10)
 1 digital system

PART C Answer any two full questions, each carries 20 marks.

7 a) Using nested programming method, obtain the state equation and output equation for the (10)

following system $\frac{Y(z)}{U(z)} = \frac{z^{-1} + 5z^{-2}}{1 + 4z^{-1} + 3z^{-2}}$

- b) Write the state space representation of a linear time invariant discrete time control system. (10)
 Explain various matrices in the representation. Prove that this representation is not unique.
- 8 a) Explain in detail the procedure for state regulator design using pole placement method for (10)
 a digital control system
 - b) Derive the expression for state transition matrix using z-transform method (10)
- 9 a) Determine whether the following systems are completely state controllable (8)

i.
$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u(k)$$

ii.
$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u(k)$$

b) Explain the effects of finite word length and quantization on controllability and closed- (12) loop placement.
