G1110

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: ME409

Course Name: COMPRESSIBLE FLUID FLOW

Max. Marks: 100

Duration: 3 Hours

Pages 2

DADT A

		PART A Answer any three full questions, each carries 10 marks.	Marks
1	a)	Definition of Mach angle 1mark , figure 1mark , derivation and final expression	(4)
		2 marks.	
	b)	Finding characteristic gas constant 2 marks, finding flow velocity 2 marks and	(6)
		finding cross sectional area 2 marks.	
2	a)	Assumptions 1 mark, figure 2 marks, derivation intermediate steps 6 marks	(10)
		and final expression 1 mark	
3	a)	Intermediate steps 5marks, final expression of mass flux 1 markand condition	(10)
		for maximum mass flux 4 marks .	
4	a)	i) Throat area 2 marks ,	(10)
		ii) pressure and temperature at the throat 2 marks,	
		iii) temperature at exit 2 mark,	
		iv) exit velocity as fraction of the maximum attainable velocity 2 marks and	
		v) mass flow rate2 marks.	
		PART B	
_	,	Answer any three full questions, each carries 10 marks.	
5	a)	Definition 2 marks, Equation 1 mark	(3)
	b)	Explanation - 3 marks	(3)
	c)	2 parts – 2 marks each	(4)
6	a)	Mach number = 0.28 (4 Marks)	(10)
		Static pressure = $477.95 \text{ kN/m}^2(3 \text{ Marks})$	
		Static temperature = 357.6 K (3 Marks)	
7	a)	Explanation – 3 marks	(3)
	b)	Length of pipe = 968 cm (2Marks)	(7)
		Diameter of the nozzle throat = 33.5 cm (3Marks)	
		Pressure = 4.41 bar (1Mark)	

API ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
KTU	
2014	

G1110

Pages 2

GIIIV		Temperature = 500.28 K (1Mark)					
8	a)	Differentiate between Fanno flow and Isothermal flow = 3 marks	(4)				
		limit for continuous subsonic isothermal $= 1$ mark					
	b)	Diameter of the duct = $22.66 \text{ cm} (1 \text{ Mark})$	(6)				
		Length of duct = $309 \text{ m} (1 \text{ Mark})$					
		Pressure = 1.008 bar (1 Mark)					
		Temperature = 297.59 K (1 Mark)					
		Stagnation pressure loss = 2.31 bar(2 Marks)					
PART C							
9	a)	Answer any four full questions, each carries 10 marks. i) $M_2 = 0.68$, $P_{01} = 0.565$ bar, $P_{02} = 0.484$ bar, $P_{01} - P_{02} = 0.081$ bar (3+3 = 6	(10)				
		marks)					
		ii) $Q_{max} = 1606.4 \text{ kJ/kg} (4 \text{ marks})$					
10	a)	i) $M_1 = 0.173$, $M_2 = 0.525$ (1+3 = 4 marks)	(10)				
		ii) $P_2 = 41.505 \text{ kPa}$, $T_2 = 1574.75 \text{ K}$, $V_2 = 795.45 \text{ m/s} (1+1+1=3 \text{ marks})$					
		iii) Percentage loss in Stagnation pressure = 11.15 % (3 marks)					
11	a)	Correct Derivation of Q _{max} (6 marks)	(10)				
		Explanation of thermal choking (4 marks)					
12	a)	Sketch and working $(2+2 = 4 \text{marks})$	(4)				
	b)	Correct figure of Open and closed type wind tunnel with parts labelled $(3+3 = 6)$	(6)				
		marks)					
13	a)	Correct circuit diagram(2 marks)	(4)				
		Correct explanation (2marks)					
	b)	Shadowgraph – Diagram and simple explanation(3 marks)	(6)				
		Schlieren – Diagram and simple explanation(3 marks)					
14	a)	Correct circuit diagram(2 marks)	(4)				
		Correct explanation (2marks)					
	b)	Kiel probe simple figure with explanation (4 marks)	(6)				
		For a Pitot tube the opening diameter should be small and it is sensitive to yaw					
		angle. Kiel probe is insensitive to yaw angle(2 marks)					
