Reg No.:		D.: Name:	Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019		
		Course Code: CE463 Course Name: BRIDGE ENGINEERING		
Max. Marks: 100 Duration			Hours	
(1	Use oj	f IS 456, SP 16 may be permitted. Use of IRC 6,18,21,83,112 and design charts may be per during the examination.)	mitted	
		PART A Answer any two full questions, each carries 15 marks.	Marks	
1	a)	Define the term "bridge". Explain the components of a bridge structure with neat	(7)	
		diagram.		
	b)	Explain the classification of bridges.	(8)	
2	a)	Write note on the factors to be considered while selecting suitable site for a	(7)	
		bridge.		
	b)	Explain the importance of Hydraulic design in Bridge Engineering	(8)	
3	a)	Explain the longitudinal forces acting on bridges.	(5)	
	b)	Write a note on the importance of impact factor in the design of bridges?	(5)	
	c)	Write the IRC specifications for Road bridges.	(5)	

PART B

Answer any two full questions, each carries 15 marks.

- 4 A reinforced concrete simply supported slab forms the deck of a road bridge, (15) having the following data:
 - (i) Clear span = 6 m.
 - (ii) Carriage way -2 Lane.
 - (iii) Width of kerb= 500 mm on either side
 - (iv)Width of bearing= 400 mm
 - (v) Materials = M25 grade concrete and Fe 415 steel.
 - (vi) Type of loading IRC class AA tracked vehicle.

Design the deck slab. Show the reinforcement details.

5 Design the interior deck slab panel of a T-beam and slab bridge for the following (15) data.

Effective span-18m, Carriage way width-7.5m, Kerb- 600 mm on either side.

Provide three longitudinal beams and five cross beams. Loading IRC class AA tracked vehicle. Adopt M20 concrete and Fe415 bars. Sketch the reinforcement details.

- 6 a) Explain the different type of forces and their combinations in the design of box (7) culverts.
 - b) What are the load distribution theories used in girders of Tee beam and slab (8) bridge. Explain Courbon's theory.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) List the merits and demerits of the Prestressed concrete bridges over RCC (5) bridges.
 - b) Write brief note on elastomeric bearings. (5)
 - c) Discuss about the stability analysis of abutments. (10)
- 8 a) With neat sketch, explain well foundation and its components. (7)
 - b) What is a bearing? What are the main functions of bearings? (7)
 - c) What are the forces to be considered during the design of piers and abutments? (6)
- 9 Determine the minimum section modulus, prestressing force and eccentricity of a (20) prestressed concrete slab bridge having the following data:

Clear span-10 m, Width of bearing-400 mm, Carriageway width-2 lane, Footpath on either side-1 m.

Live load-IRC Class AA tracked vehicle.

Materials- M40 concrete, Ultimate tensile strength of steel-1500 N/mm².

Compressive stress of concrete at transfer, $f_{ci}\!\!=\!\!35~N/mm^2$

 $f_{ct}=15 \text{ N/mm}^2, f_{cw}=12 \text{ N/mm}^2, f_{tt}=f_{tw}=0.$

Loss ratio=0.8
