Reg No.:
Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: AE405
 Course Name: ADVANCED CONTROL THEORY

(Normal graph sheets will be supplied)

PART A

Answer any two full questions, each carries 15 marks.
1 a) Explain state trajectory of LTI System
b) Obtain the solution to non homogeneous state equation $\dot{X}=A X+\mathrm{BU}$ using Laplace transform approach.

2 a) Explain the terms state space, state, state variable and state vector
b) Explain different types of singularities in phase plane analysis.

3 a) List out the Limitations of Transfer function approach
b) A second order system is represented by the differential equation $\ddot{e}+2 \zeta \omega_{n} \dot{\mathrm{e}}+\omega_{n}{ }^{2} \mathrm{e}$ $=0$ where $\zeta=0.15, \omega_{\mathrm{n}}=1 \mathrm{rad} / \mathrm{sec}$, Find out the singularity associated with the system
c) List out the advantages and disadvantages of Phase Plane analysis method

PART B
Answer any two full questions, each carries 15 marks.
4 a) For the system shown in figure the relay with saturation type nonlinearity is connected with a plant having $\mathrm{G}(\mathrm{s})=1 / \mathrm{s}(\mathrm{s}+1)(\mathrm{s}+2)$.Determine whether the limit cycles excists.

b) Explain the merits and demerits of Describing Function Method

5 a) Using $\mathrm{V}(\mathrm{x})=\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}$ study the stability of the origin of the system

$$
x_{1}=-x_{1}+3 x_{1}^{2} x_{2}, \quad x_{2}=-x_{2}
$$

b) Explain stability concept based on Lyapunov Direct Method Why it is called so?

6 a) A system is described by the following $x=A x$ where $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$.
Assume matrix Q to be identity matrix, solve for matrix P in the equation $\mathrm{A}^{\mathrm{T}} \mathrm{P}+\mathrm{PA}=-\mathrm{Q}$. Find the Liapunov's function $V(\mathrm{x})$.
b) Explain the Describing Function of Relay with saturation

PART C

Answer any two full questions, each carries 20 marks.

7 a) Find the z transform of $\mathrm{x}(\mathrm{t})=\operatorname{Cos}(\omega \mathrm{t})$ for $0 \leq \mathrm{t}$

$$
\begin{equation*}
=0 \quad \text { for } \mathrm{t}<0 \tag{8}
\end{equation*}
$$

b) Find the Inverse z transform by Partial Fraction Expansion Method

$$
\begin{equation*}
X(Z)=\frac{\left(1-e^{-a T}\right) z}{(z-1)\left(z-e^{-a T}\right)} \tag{12}
\end{equation*}
$$

8 a) Draw the Discrete Root Locus of the following system $\mathrm{GH}(\mathrm{z})=\frac{z}{(z-1)(z-0.7)}$
b) A system is represented by the equation,

$$
\begin{gather*}
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-8 & -6
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \tag{10}\\
C=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gather*}
$$

Check Controllability and Observability

9 a) Obtain the Pulse transfer function of the given closed loop system.

b) Explain the effect of Pole zero cancellation on Controllability and Observability

