Reg No.:_

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: EC304

Course Name: VLSI

Max. Marks: 100

Duration: 3 Hours

		PART A Answer any two full questions, each carries 15 marks	Marks
1	a)	With a neat sketch, explain the process of ion implantation for IC fabrication.	(8)
	b)	Draw schematic and explain any two CVD processes.	(7)
2	a)	With the help of neat diagram explain crystal growth in Czochralski process.	(7)
	b)	Define photolithography and discuss various steps involved in photolithographic process.	(8)
3	a)	A Si sample is covered with 0.25 μ m thick SiO_2 layer. Find the time required to grow an additional 0.2 μ m thick SiO_2 at 1200 \square by dry oxidation. For dry oxidation at 1200 \square B = 0.045 μ m, B/A = 1.120 μ m/hr, τ = 0.027	(5)
	b)	Solve Fick's law for pre deposition diffusion.	(3)
	c)	List various methods of resistor fabrication.	(7)

PART B

Answer any two full questions, each carries 15 marks

4 a) The VTC of an inverter is given in Figure 1.

Figure 1.

Define the terms Noise Margin Low and Noise Margin High. Calculate their numerical values.

- b) Calculate drain current for the region marked X in Figure 1. Given $V_{tn} = |V_{tp}| = (3)$ 0.5V and $\beta_n = 1mA/V^2$.
- c) Draw the circuit of NMOS pass transistor logic. Discuss its output characteristics (8) and comment on the drawbacks.
- 5 a) For a two input CMOS NOR gate, draw
 - i. Circuit diagram
 - ii. Stick diagram

(4)

(10)

(9)

B

b)	Implement the logic function $(AB + C(A+D))'$ using CMOS logic.	(5)
----	---	-----

- 6 a) Draw the switching characteristics of CMOS inverter and discuss the terms (6) associated with it.
 - b) Realize an XOR gate using
 - i. CMOS logic
 - ii. NMOS pass transistor logic
 - iii. Transmission gate logic

PART C

Answer any two full questions, each carries 20 marks

- 7 a) Draw the circuit diagram of a 6T CMOS SRAM cell. Briefly explain the read and (10) write operations by drawing simplified models.
 - b) Implement a full adder using complementary static CMOS. Explain the merits and (10) demerits associated with the circuit.
- 8 a) Draw and explain the internal architecture of an FPGA. List four applications of (10) FPGA.
 - b) With block diagrams, illustrate the behaviour of linear carry select adder and (10) square root carry select adder.
- 9 a) How does a sensing amplifier contribute to the operation of an SRAM? With a (10) circuit diagram, explain how differential sensing is applied to an SRAM memory column.
 - b) Show the conversion of a ripple carry adder into a carry bypass adder. Draw the (10) block diagram of a 16 bit carry bypass adder and show the worst-case delay path.
