Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EC304

		Course Code: EC304	
		Course Name: VLSI	
Max. Marks: 100 Duration: 3			Hours
PART A			
Answer any two full questions, each carries 15 marks Marks			
1	a)	How electronic grade silicon is prepared from raw SiO ₂ ?	(5)
	b)	Illustrate the dry and wet oxidation technique used in IC fabrication with schematic diagram.	(10)
2	a)	With the help of mathematical equations, explain the distribution of impurities in a semiconductor in ion implantation process.	(10)
3	b)a)	Phosphorous is implanted in a p-type silicon sample with a uniform doping concentration of 5×10^{16} atoms per cm ³ . If the beam current density is $2.5\mu A$ per cm ² and the implantation time is 8 minutes, calculate the implantation dose and peak impurity concentration. Assume $\Delta Rp=0.3\mu m$ Explain N-well CMOS IC fabrication sequence with the help of neat diagrams.	(5)
3			, ,
	b)	Explain one method of fabrication of capacitor structure in integrated circuits.	(5)
PART B			
Answer any two full questions, each carries 15 marks			
4	a)	Explain the various types of power dissipation in CMOS inverter? Derive the expression for total power consumption of a CMOS inverter.	(10)
	b)	Why PMOS transistor can pass only strong ones and NMOS can pass strong zeros.	(5)
5	a)	Draw the circuit diagram and layout of a two input CMOS NAND gate.	(10)
	b)	Implement the function $u = A'B+AB'$ and $v = AB+A'B'$ using complementary pass transistor logic.	(5)
6	a)	Explain the structure and working of a transmission gate. Implement 4×1 multiplexer using transmission gates.	(10)
	b)	Implement the function $f = [AB + C (DE+F)]$ ' using static CMOS logic.	(5)
PART C			
		Answer any two full questions, each carries 20 marks	
7	a)	Explain the read and write operation of a six transistor CMOS SRAM cell.	(10)
	b)	What is FPGA? Explain its constructional details with diagram. What are the advantages of FPGA?	(10)
8	a)	Design a 4-bit × 4-bit NOR-based ROM array and explain its working.	(10)
	b)	Explain the read and write operation of a three-transistor DRAM cell.	(10)
9	a)	Explain the working a 16-bit carry-by pass adder and write down the expression	(10)

for worst-case delay.

b) Explain 4×4 bit-array multiplier with block diagram.

(10)
