

Scheme of Valuation/Answer Key

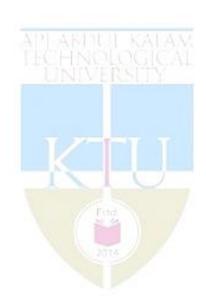
(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Course Code: CE308

Course Name: TRANSPORTATION ENGINEERING - I


Ma	x. M	farks: 100 Duration: 3	Hours
		DADT A	
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Classification as per Nagpur Road Plan	(4)
		Modification as per third Twenty Year Road Development Plan	(4)
	b)	Requirements of ideal alignment	(4)
		Special considerations in case of hill roads	(3)
2	a)	Listing the factors	(2)
		Explanation	(6)
	b)	Speed of overtaken vehicle, Vb=80-16=64 kmph t=2s	(1)
		$d_1 = 0.28 V_b t = 35.84 m$	(1)
		$s=0.2V_b+6=18.8 \text{ m}$	(1)
		$T = (14.4s/A)^0.5 = 13.43 \text{ sec}$	(1)
		$d_2 = 0.28V_b*T + 2s = 278.27m$	(1)
		$d_3 = 0.28VT = 300.83 \text{ m}$	(1)
		$OSD = d_1 + d_2 + d_3 = 614.94 \text{ m}$	(1)
3	a)	Steps for practical design of superelevation for mixed traffic	(4)
	b)	C=80/(75+V)=0.5	(1)
		(i) Based on comfort condition, Ls = $0.0215V^3/CR = 86 \text{ m}$	(1)
		(ii) $e = 0.07$	(0.5)
		We =0.07+0.47=0.54m, $B = 7.54 \text{ m}$	(0.5)
		Based on rate of introduction of superelevation, Ls=NeB=79.17 m	(1)
		(iii) Based on IRC formula, $Ls = 2.7V^2/R = 54 \text{ m}$	(1)
		Design value of Ls =86 m	(1)
	c)	$SSD = 0.28Vt + V^2/254f = 127.99 \text{ m } (t=2.5s, f=0.35)$	(2)
		N = 1/40 + 1/80 = 0.0375	(1)
		Assuming L>SSD, L= $NS^2/4.4 = 139.61 \text{ m} > SSD$, Hence assumption is correct	(2)

	PART B						
		Answer any two full questions, each carries 15 marks.					
4	a)	Explanation on desirable properties of aggregates (Min. 9 points) (1 mark for	(9)				
		each)					
	b)	Differences between flexible and rigid pavements (Min. 6 points) (1 mark for	(6)				
		each)					
5	a)	Listing the factors	(3)				
		Explanation on significance of each factors	(5)				
	b)	$N = \frac{365ADF[(1+r)^n - 1]}{r} = 50 \text{ msa}$	(3)				
		GSB = 300 mm	(1)				
		GB = 250 mm	(1)				
		DBM = 125 mm	(1)				
		BC = 50 mm	(1)				
6	a)	Brief illustration on steps of construction of bituminous pavement	(6)				
	b)	Listing of all the failures in flexible pavement	(1)				
		Explanation and Causes of minimum four types of failures (2 marks for each)	(8)				
		PART C					
		Answer any two full questions, each carries 20 marks.					
7	a)	Listing the road user characteristics and explanation on their influence	(5)				
		Listing the vehicular characteristics and explanation on their influence	(5)				
	b)	$y_a = q_a/s_a = 0.216$	(1)				
		$y_b = q_b/s_b = 0.178$	(1)				
		$Y = y_a + y_b = 0.395$	(1)				
		L=2n+R=20 sec (Assuming n=2)	(2)				
		Co = (1.5L+5)/(1-Y) = 58 sec	(2)				
		$G_a = y_a(\text{Co-L})/Y = 21 \text{ sec}$	(1)				
		$G_b = y_b(\text{Co-L})/Y = 17 \text{ sec}$	(1)				
		Phase Diagram	(1)				
8	a)	Explanation on the four mentioned aircraft characteristics and their influence	(12)				
		(4x3)					
	b)	Definition on wind rose diagram (Any one type)	(3)				
		Explanation on its usefulness in finding the best orientation (Any one type)	(5)				
9	a)	Correction for elevation = $1500*(7/100)*(1000/300) = 350$ m	(3)				
			ı				

API ABDU TECHNO UNIVE	L KALAM LOGICAL RSITY
K	U
20	

	(1)
ard temperature = $15-0.0065*1000=8.5^{\circ}$ C	(1)
ence in temperature above airport reference temperature = $34-8.5 = 25 5^{\circ}$ C	(1)
etion for temperature = $1850*(1/100)*25.5 = 471.75$ m	(3)
eted length = 2321.75 m	(1)
correction (%) = $54.78 > 35\%$	(1)
g the design considerations	(4)
nation with sketch	(6)
****	<u> </u>
g	orrection (%) = $54.78 > 35\%$ the design considerations ation with sketch

