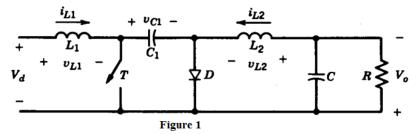
Reg No.:	Name:
----------	-------


APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EE364

		Course Name: SWITCHED MODE POWER CONVERTERS			
Max. Marks: 100 Duration: 3 l		Hours			
	Graph Sheets will be provided				
		PART A			
		Answer all questions, each carries5 marks.	Marks		
1		Obtain the input-output voltage and current relation as a function of duty ratio for	(5)		
		a Boost dc-dc converter in continuous conduction mode.			
2		What is linear power supply? Mention the drawbacks of linear power supply.	(5)		
3		Explain the basic concept of a push pull converter derived from buck converter.	(5)		
4		Define the terms amplitude modulation ratio and frequency modulation ratio in a PWM switching scheme.	(5)		
5		Compare PWM technique and space vector modulation technique.	(5)		
6		Explain the concept of tolerance band current control technique.	(5)		
7		What is meant by resonant converters? How are they useful in SMPC applications?	(5)		
8		Briefly explain the characteristics of an undamped series resonant circuit.	(5)		
		PART B			
		Answer any two full questions, each carries 10 marks.			
9	a)	For an ideal buck converter, derive the value for L_{crit} in terms of duty cycle,	(5)		
		switching frequency, and load at the boundary of discontinuous conduction mode			
		(DCM) and continuous conduction mode (CCM).			
	b)	In a step up converter, consider all components to be ideal. Let V_d be 8-16 V ,	(5)		
		Vo= 24V, f_s = 20kHz, and C = 470 μ F. Calculate L_{min} that will keep the converter			
		operating in continuous conduction mode if $P_0 \ge 5W$.			
10	a)	With help of neat sketches derive the expression for the voltage ripple in an ideal	(5)		
		buck-boost converter.			

b) In a Cuk converter shown in Figure 1, operating at 50 kHz, $L_1 = L_2 = 1$ mH and $C_1 = 5$ μ F. The capacitor is sufficiently large to yield an essentially constant output voltage. Here, $V_d = 10$ V and the output V_0 is regulated to be constant at 5V. It is supplying 5 W to a load. Assume ideal conditions. Calculate the RMS current flowing through the capacitor C_1

- 11 a) With help of neat sketches explain the operation of full bridge DC-DCconverter (6) with biplar voltage switching scheme.
 - b) Write a short note on the electrical isolation in DC-DC converters.

PART C

Answer any two full questions, each carries 10 marks.

(4)

- 12 a) With help of neat sketches explain the operation of a flyback converter (6)
 - b) A forward converter with a demagnetising winding is designed to operate with a maximum duty ratio D_{max} of 0.7. Calculate the voltage rating of the switch interms of input voltage V_d .
- 13 a) With help of relevant sketches explain the operation of a full bridge DC power (5) supply.
 - b) Explain the control of a single phase full bridge inverter with PWM unipolar voltage switching scheme. (5)
- 14 a) How the output voltage of a single phase inverter is controlled using voltage (5) cancellation technique? Explain.
 - b) Explain the operation of a three phase inverter with square wave switching (5) scheme.

PART D

Answer any two full questions, each carries 10 marks.

- 15 a) Explain the concept of space vector and space vector modulation technique. (5)
 - b) Explain the concept of programmed harmonic elimination switching scheme to (5)

control the inverter output.

- 16 a) Write a short note on the current mode control of inverters (3)
 - b) Explain the operation of a ZCS resonant converter with necessary figures and (7) circuit diagram.
- 17 a) With help of neat circuit diagram and relevant waveforms, discuss the operation (7) of series loaded resonant dc-dc converter in discontinuous current conduction mode.
 - b) Compare zero voltage switching (ZVS) and zero current switching(ZCS) (3)