Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: EC368

Course Name: Robotics

Max. Marks: 100

PART A

Answer any two full questions, each carries 15 marks

Duration: 3 Hours
PART A
Answer any two full questions, each carries 15 marks

Marks
1 a) List any three important milestones in the development of the field of robotics.
b) Define the following robot specifications: (a) Payload (b) Reach
c) With suitable diagrams, explain the working principle of (i) Tachometer (ii) Strain gauge-based force-torque sensor.
2 a) Identify five applications of non-industrial robots.
b) Compare between hydraulic and pneumatic drive systems.

3 a) Explain the classification of robotic joints with illustrations.
b) How can microprocessors be used in speed and direction control of electric motors?

PART B
 Answer any two full questions, each carries 15 marks

4 a) What are the functions of a robotic vision system? List two applications where vision systems can be employed in robots.
b) A homogenous transformation matrix can be used to represent rigid motion. Explain.
c) Derive the generalized rotation matrix used to represent rigid motion due to a spherical wrist, in terms of its joint angles.
5 a) An object in space executes the following sequence of motions:
(i) Rotation of 30° about the world z -axis
(ii) Translation of 3 unit along current y-axis
(iii) Rotation of 45° about world x -axis
(iv) Translation of 6 units along current x -axis.

Find the relationship between the world frame and the resultant object frame. Also determine the coordinates of a point in the world frame, if it is described by $\left[\begin{array}{lll}1 & 5 & 2\end{array}\right]^{\mathrm{T}}$ in the object frame.
b) Describe the steps in frame assignment using D-H convention for a cylindrical
robot configuration (without any wrist attached).
6 a) What is a rotation matrix? List three properties of rotation matrices.
b) A homogenous transformation matrix describing the end-effector frame with respect to the base frame is provided for a robot with articulated configuration, fitted with a spherical wrist. The displacement of the end-effector from the wrist centre is also given. Explain how the closed form solution to the inverse kinematics problem can be determined.

PART C
Answer any two full questions, each carries 20 marks
7 a) What is a singularity in the context of velocity kinematics? Explain its significance.
b) Explain the concept used in Legrangian mechanics.
c) Write a VAL program to pick five identical objects from the same pick-up point and place them at five locations spaced 8 units apart along a straight line, in succession. Let the first point be located 10 units away from the pick-up point along the same straight line. List the assumptions made.

8 a) Derive the Jacobian used to describe the relationship between the velocities(linear and angular) of the tip and the joint velocities of a spherical manipulator. It may be assumed that there is no wrist attached to the robot.
b) Explain the classification of Robot Languages.

9 a) What is a PID controller? How can it be used in robot actuation and control?
b) Describe any four industrial applications of robots in material handling and assembly.

