

Scheme of Valuation/Answer Key											
	(Scheme of evaluation (marks in brackets) and answers of problems/key))								
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019											
Course Code: EE306											
Course Name: POWER SYSTEM ANALYSIS											
Max	Max. Marks: 100 Duration: 3 Hours										
PART A											
1		Definition (2)Merits(1.5)Demerits (1.5)									
2		Significance of current limiting reactors in power system (2)									
		Location (1.5) Examples (1.5)									
3		Difference of Slack bus from other buses (3)	(5)								
-		Significance of slack bus (2)	(-)								
4		AVR(3)Functions (2)	(5)								
5		Problem statement <i>Minimize</i> $F_T = \sum_{n=1}^{k} F_n$ subjected to $P_R - \sum_{n=1}^{k} P_n = 0$ (2)									
		Derivation of $\frac{dF_n}{dP_n} = \lambda$ for $n = 1, 2,, k(3)$									
6		Loss coefficients(2)Penalty factor(3)	(5)								
7		Steady state stability(2)Dynamic stability (1)Transient stability (2)	(5)								
8		five methods. 1 mark for each(5)									
		PART B	·								
		Answer any twofull questions, each carries10 marks.									
9	a)	Calculations of base values of all sections (2)	(10)								
		Reactance of $G_1 = j0.2(1)$ Reactance of $T_1 = j0.0857(1)$									
		Reactance of transmission line $=j0.1815(1)$									
		Reactance of $T_2 = j0.0915(1)$ Reactance of $M_1 = j0.2745(1)$									
		Reactance of $M_2 = j0.594(1)$									
		Reactance diagram with all reactance's marked (2)									
10	a)	Zero sequence network of star-delta transformer (3)	(5)								
		(star grounded-(2)+star ungrounded(1))									
		Zero sequence network of delta-delta transformer (2)									
	b)	Diagram with proper markings (3)Explanation(2)	(5)								
11	a)	Single Line to Ground fault	(10)								

F1055

	r										
		(a) Fault current (2)									
		(b) Interconnection of sequence networks (3)									
		Line to Line fault									
		(a) Fault current (2)									
		(b) In	terconnectio	on of sequ	ence networks (3)						
PART C											
Answer any twofull questions, each carries10 marks.											
12	a)	a) Admittance Value admittance table(2)									
		Line	G (p.u)	B(p.u)							
		1-2	2	-6							
		1-3	1	-3							
		2-3	0.66	-2							
		2-4	1	-34101	ARTICLE KALAM						
		3-4	2	-6	HNOLOGICAL						
					ALV PRALLE						
		Case a: V	Vith dotted l	lin <mark>e</mark> unco	nnected write Y _{BUS} (4)						
		$Y_{11}=(1-j3), Y_{22}=(0.666-j2)+(1-j3)=(1.666-j5), Y_{3}=(1-j3)+(0.666-j2)+(2-j6)=(3.66-j11)$									
		Y ₄₄ =(2-j6)+(1-j3)=(3-j9)									
		$Y_{12}=Y_{21}=0$, $Y_{13}=Y_{31}=-(1-j3)=\frac{-1+j3}{-1+j3}$, $Y_{14}=Y_{41}=0$									
		$Y_{23}=Y_{32}=-(0.666-j2)=-0.666+j2$. $Y_{24}=Y_{42}=-(1-j3)=-1+j3$									
		$Y_{34}=Y_{43}=-(2-j6)=-2+j6$									
		Case b: With dotted line connected write $Y_{BUS}(4)$									
		only the fo	ollowing char	nges due to	o the inclusion of the line						
		Y ₁₁ =(1-j3)+(2-j6)=(3-j9)									
		Y ₂₂ =(2-j6)+(0.666-j2)+(1-j3)=(3.666-j11)									
		$Y_{12}=Y_{21}=-(2-j6)=-2+j6$ all other values remains the same as case a									
13	a)	Any five	difference b	etween G	S and NR (5x 1=5 marks)	(5)					
	b)	Figure (2	2), Explana	tion (3)		(5)					
14		Derivatio	n Generato	r load mo	del (5)	(10)					
		Complete block diagram with all parameters specified (5)									
PART D											
Answer any twofull questions, each carries 10 marks.											
15	a)			$\frac{dF_1}{dP_1} =$	$0.096 P_1 + 16 Rs/MWhr$	(10)					
	1			I		1					

F1055

		$\frac{dF_2}{dP_2} = 0.16 P_2 + 12 Rs/MWhr(2)$					
		Load 50 MW: $P_1=15.625$ MW $P_2=34.375$ MW (3)					
		Load 150 MW: $P_1=78.126$ MW $P_2=71.874$ MW (3)					
		Total cost= Rs. 52628 (2)					
16	a)	Definition/Explanation of spinning reserve(2)					
		Significance with example (3)					
	b)	Derivation for the condition of equal area criterion with necessary diagram (5)	(5)				
17	a)	Derivation of swing equation (5)	(5)				
	b)	$K.E. = \frac{1}{2}J\omega_{sm}^2 = 434.26 MJ(1)$	(5)				
		$H = \frac{KE}{MVA \ rating} = 6.15 \ MJ/MVA \ (2)$					
		$M = \frac{GH}{180 f} = 0.0484 MJ - \frac{s}{electr} deg(2)$					

