F192011

Name:_____

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B. TECH DEGREE EXAMINATION(S), DECEMBER 2019	
Course Code: EE302			
Course Name: ELECTROMAGNETICS			
Max. Marks: 100 Duration: 3 Ho			Hours
		Answer all questions, each carries5 marks.	Marks
1		Explain the physical significance of Divergence of a vector field.	(5)
2		Two-point charges of 20nC and -20nC are located at (1,0,0) and (0,1,0)	(5)
		respectively in free space. Calculate the electric field intensity at $(0,0,1)$.	
3		State and prove Ampere's Circuital law.	(5)
4		Explain Electric Polarization.	(5)
5		What is meant by uniform plane waves? Also, why are electromagnetic waves	(5)
		called as transverse electromagnetic waves?	
6		Explain Poynting vector and Poynting theorem.	(5)
7		Explain skin depth and obtain an expression for it.	(5)
8		Explain characteristic impedance and standing wave ratio of transmission line.	(5)
PART B Answer any two full questions, each carries10 marks.			
9		Verify divergence theorem for the vector field $\overline{H} = 2\rho Z^2 \overline{a_0} + \rho \cos^2 \phi \overline{a_2}$ over	(10)
		the surface defined by $\rho = 2$. $0 < Z < 2$. $0 < \emptyset < 2\pi$.	
10	a)	A vector field $\overline{E} = \frac{100 \cos \theta}{\rho^3} \overline{a_{\rho}} + \frac{50 \sin \theta}{\rho^3} \overline{a_{\theta}}$ at a point with spherical	(6)
		coordinates $(2, \frac{\pi}{3}, \frac{\pi}{9})$. Find (i) Magnitude of \overline{E} (ii) Unit vector in cartesian	
		coordinate in the direction of \overline{E} .	
	b)	Explain Equipotential surface.	(4)
11	a)	Derive the expression of Electric field intensity due to infinite line charge having	(6)
		line charge density ρ_L C/m.	
	b)	Derive Laplace's equation for electrostatic field.	(4)
PART C Answer any two full questions, each carries10 marks.			
12		Derive Maxwell's equations in integral form and point form.	(10)
13	a)	A circular loop of radius 'a' m is carrying a current of I A. Find the magnetic	(6)

Reg No.:_____

F192011

(3)

field intensity at a point 'h' m from the loop along its axis.

- b) Explain magnetic scalar and vector potential. (4)
- 14 a) Derive Continuity equation.
 - b) Explain displacement current density. Obtain the dielectric-dielectric boundary (7) conditions for electric fields.

PART D

Answer any two full questions, each carries 10 marks.

- 15 Derive wave equation from Maxwell's equation for a plane wave in a perfect (10) dielectric.
- 16 Explain power flow in a co-axial cable using poynting theorem. (10)
- 17 a) Explain very briefly about Electromagnetic Interference and Electromagnetic (2) compatibility.
 - b) A 180 MHz plane wave is travelling in a medium characterized by $\mu_r = 1$, $\varepsilon_r = (8)$ 25, and $\sigma = 2.5 \frac{ms}{m}$. Find (i) intrinsic impedance (ii) Attenuation constant (iii)

Propagation constant (iv) Skin depth.
