Scheme of Valuation/Answer Key (Scheme of evaluation (marks in brackets) and answers of problems/key)					
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2019					
Course Code: ME304					
Course Name: DYNAMICS OF MACHINERY					
Max. Marks: 100				Duration: 3 Hours	
PART A					
		Answer any	three full questions, each carries 10	arks.	Marks
1	a)	Configuration diagram Free body diagram of li Torque $=878 \mathrm{Nm}$ (coun	-3 marks ks -6 marks clockwise) -1 marks		(10)
2		Graphical Method Configuration diagram Vector diagram of link Torque Analytical Method: Free body diagram/Con Equilibrium equations Torque - 2 (Graphical/analytical/ the problem)	irtual work/matrix method can be	used for so	(10)
3	a)	Configuration diagram Inertia force $=-4236$ Inertia torque due to rec Correction torque $=45$. Torque due to weight of Total inertia torque on	procating parts $=-248 \mathrm{Nm}$ 7 Nm mass $=-27.14 \mathrm{Nm}$ counter clockwise e crank shaft $=320.2$ clockwise	-3 marks - 1 mark - 1 mark - 2 mark - 2 mark - 1 mark	(10)
4	a)	$\begin{array}{ll} \hline \text { Statement }-2 \text { marks } \\ \text { Explanation }-3 \text { marks } \end{array}$			(5)

	b)	Figure - 2 marks Explanation - 3 marks	(5)
PART B			
Answer any three full questions, each carries 10 marks.			
5		Turning moment diagram -3 marks Resultant turning moment diagram -2 marks Power developed $=4.24 \mathrm{KW}$ -1 marks Maximum fluctuation of energy $=11.78 \mathrm{Nm}$ -1 marks Coefficient of fluctuation of speed $=0.04$ or 4% -1 marks Coefficient of fluctuation of energy $=0.0278$ or 2.78% -1 marks Maximum angular acceleration of the flywheel $=292 \mathrm{rad} / \mathrm{s}^{2}$ -1 marks	(10)
6	a)	Table - -4 marks Primary crank and secondary crank position -2 mark Couple polygon -2 marks Force polygon -2 marks	(10)
7		Gyroscopic couple -2 marks Centrifugal couple -2 marks Total over turning couple -2 marks Balancing couple -2 marks Angle of heel -2 marks (Wheel radius (Rw) was not given in the question. So, a suitable value can be assumed or an expression with Rw can be formulated. Marks in proportion to the number of steps can be given.)	(10)
8		Figure - 1 marks Gyroscopic couple due to four wheels $=37.1 \mathrm{Nm} \quad-2$ marks Gyroscopic couple due to rotating parts of the engine $=34.7 \mathrm{Nm}-1$ marks Centrifugal force $=9263 \mathrm{~N} \quad-1$ marks Centrifugal couple $=4631.5 \mathrm{Nm} \quad-1$ marks Load on the front wheel $1=4322.86 \mathrm{~N} \quad-1$ marks Load on the front wheel $2=7435.26 \mathrm{~N}-1$ marks	(10)

		Load on the rear wheel $3=2374.74 \mathrm{~N} \quad-1$ marks Load on the rear wheel $4=5487.14 \mathrm{~N} \quad-1$ marks	
PART C			
Answer any four full questions, each carries 10 marks.			
9	a)	Explanation - 2 marks	(2)
	b)	1. Stiffness of the spring $=877 \mathrm{~N} / \mathrm{m}$ -2 marks 2. Logarithmic decrement $=0.278$ -2 marks 3. Damping factor $=0.0442$ -2 marks 4. Damping coefficient $=7.4 \mathrm{~N} / \mathrm{m} / \mathrm{s}$ -2 marks	(8)
10	a)	1. Stiffness of each spring $=49368 \mathrm{~N} / \mathrm{m}$ -4 marks 2. Dynamic force transmitted $=39.27 \mathrm{~N}$ -3 marks 3. Natural frequency of the system $=45.35 \mathrm{~Hz}$ -3 marks	(10)
11	a)	Figure - 1 mark Explanation of term dynamic magnifier - 2 marks Explanation of term transmissibility - 2 marks	(5)
	b)	It can be solved with the given data. Moment of inertia as 10^{9} or $109 \mathrm{~mm}^{4}$ and E as 205×103 or $205 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ can be used. Deflection values may not be reasonable as the given data are not correct. Marks shall be given if the students use correct data and get different answers.	(5)
12		Figure of torsionally equivalent shaft -4 marks 1. Diameter 'd' mm for the shaft $\mathrm{CD}=91.7 \mathrm{~mm}$ -3 mark 2. Natural frequency of free torsional vibration $=3.33 \mathrm{~Hz}$ -3 marks	(10)
13	a)	Explanation of term whirling speed of a shaft -2 marks proof - 3 marks	(5)
	b)	Figure of shaft -1 marksStatic deflection due to 1 kg of mass at the centre $=28 \times 10^{-6} \mathrm{~m}-1$ marksStatic deflection due to mass of the shaft $=0.133 \times 10^{-3} \mathrm{~m}$Frequency of transverse vibration $=43.3 \mathrm{~Hz}$ -1 marks Whirling speed of a shaft $=2598 \mathrm{rpm}$. -1 marks	(5)

14	a)	Node lengths $1_{\mathrm{A}}=1.146 \mathrm{~m}$ OR 0.4356 $\mathrm{l}_{\mathrm{C}}=1.91 \mathrm{~m} \text { OR } 0.726 \mathrm{~m}$ Figure Frequency $1=171 \mathrm{~Hz}$ Frequency $2=277 \mathrm{~Hz}$	- 2 marks - 2 marks - 4 mark - 1 mark - 1 mark	(10)
