Duration: 3 Hours

Name:_____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: AE306 Course Name: DIGITAL SIGNAL PROCESSING

PART A

Max. Marks: 100

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Compute the IDFT of the sequence X(k)={7, -0.707-j0.707, -j, 0.707-j0.707, 1,	(10)
		0.707+j0.707, j, -0.707+j0.707} using DIT algorithm.	
	b)	Find the transfer function and impulse response of the system described by the	(5)
		difference equation $y(n)=1/2 y(n-1)+x(n)$	
2	a)	Explain different type of discrete time systems with example	(10)
	b)	Explain aliasing and why do we need antialiasing filter	(5)
3	a)	Find the DFT of the sequence $x(n) = \{4, 2, 0, 4\}$.	(5)
	b)	Find the z transform of $x(n) = (\frac{1}{3})^n u(n) * nu(n)$	(5)
	c)	Find the cross correlation of the sequences $x(n) = \{1,2,1,1\}, y(n) = \{1,1,2,1\}$	(5)
		PART B	

Answer any two full questions, each carries 15 marks.

4	a)	Compare FIR and IIR filter	(5)
	b)	Design an analog Butterworth filter that has a -2dB pass band attenuation at a	(10)
		frequency of 20 rad/sec and at least -10 dB stop band attenuation at 30 rad/sec	
5	a)	Design an ideal high pass FIR filter with $H_d(e^{j\omega})=1$ for $\frac{\pi}{4} \le \omega \le \pi$	(10)
		$=0 \text{ for } \omega \leq \frac{\pi}{4}$	
		Find $h(n)$, $H(z)$, magnitude response for N =10 using Hamming window .	
	b)	Write short note on Hilbert transformers	(5)
6	a)	Find H(z) from H(s)= $\frac{2}{(s+4)(s+2)}$ using bilinear transformation. Assume T=1sec	(5)
	b)	Derive the frequency response of linear phase FIR filter of order N(even) with the	(5)
		symmetric impulse response	
	c)	Explain analog frequency transformation	(5)

С

Reg No.:_____

F192042

PART C

Answer any two full questions, each carries 20 marks.

7	a)	Obtain the direct form I, direct form II realization of the system described by the	(10)
		difference equation $y(n)+3y(n-1)+y(n-2)+y(n-3)=x(n)+3x(n-1)+4x(n-2)+5x(n-3)$.	
	b)	Describe the operation of a typical MAC configuration in DSP	(5)
	c)	Write note on superscalar architecture	(5)
8	a)	Explain about the quantization error due to the finite word length registers in	(5)
		digital filters.	
	b)	Realize the following FIR system function using minimum number of multipliers	(5)
		H(z)={ $1+\frac{1}{4}z^{-1}+\frac{1}{2}z^{-2}+\frac{1}{2}z^{-3}+\frac{1}{4}z^{-4}+z^{-5}$ }	
	c)	Draw and explain the architecture of TMS 320C 5X	(10)
9	a)	Write notes on the following quantization errors	(5)
		1. Truncation error	
		2. Round off error	
	b)	Explain	(10)
		1. Difference between von-Neumann architecture and Harvard architecture	
		2. Special instruction for DSP processor	
	c)	Realize the system in parallel form described by the difference equation	(5)
		y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-2)	
