Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019
Course Code: AE306
Course Name: DIGITAL SIGNAL PROCESSING
Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks
1 a) Compute the IDFT of the sequence $\mathrm{X}(\mathrm{k})=\{7,-0.707-\mathrm{j} 0.707,-\mathrm{j}, 0.707-\mathrm{j} 0.707,1$, (10) $0.707+\mathrm{j} 0.707, \mathrm{j},-0.707+\mathrm{j} 0.707\}$ using DIT algorithm.
b) Find the transfer function and impulse response of the system described by the difference equation $y(n)=1 / 2 y(n-1)+x(n)$
2 a) Explain different type of discrete time systems with example
b) Explain aliasing and why do we need antialiasing filter

3 a) Find the DFT of the sequence $x(n)=\{4,2,0,4\}$.
b) Find the z transform of $\mathrm{x}(\mathrm{n})=\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n}) * \mathrm{nu}(\mathrm{n})$
c) Find the cross correlation of the sequences $\mathrm{x}(\mathrm{n})=\{1,2,1,1\}, \mathrm{y}(\mathrm{n})=\{1,1,2,1\}$

PART B
 Answer any two full questions, each carries 15 marks.

4 a) Compare FIR and IIR filter
b) Design an analog Butterworth filter that has a -2 dB pass band attenuation at a frequency of $20 \mathrm{rad} / \mathrm{sec}$ and at least -10 dB stop band attenuation at $30 \mathrm{rad} / \mathrm{sec}$
5 a) Design an ideal high pass FIR filter with $\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1$ for $\frac{\pi}{4} \leq|\omega| \leq \pi$

$$
\begin{equation*}
=0 \text { for }|\omega| \leq \frac{\pi}{4} \tag{10}
\end{equation*}
$$

Find $\mathrm{h}(\mathrm{n}), \mathrm{H}(\mathrm{z})$, magnitude response for $\mathrm{N}=10$ using Hamming window .
b) Write short note on Hilbert transformers

6 a) Find $\mathrm{H}(\mathrm{z})$ from $\mathrm{H}(\mathrm{s})=\frac{2}{(s+4)(s+2)}$ using bilinear transformation. Assume $\mathrm{T}=1 \mathrm{sec}$
b) Derive the frequency response of linear phase FIR filter of order N(even) with the symmetric impulse response
c) Explain analog frequency transformation

PART C

Answer any two full questions, each carries 20 marks.

7 a) Obtain the direct form I, direct form II realization of the system described by the difference equation $y(n)+3 y(n-1)+y(n-2)+y(n-3)=x(n)+3 x(n-1)+4 x(n-2)+5 x(n-3)$.
b) Describe the operation of a typical MAC configuration in DSP
c) Write note on superscalar architecture

8 a) Explain about the quantization error due to the finite word length registers in digital filters.
b) Realize the following FIR system function using minimum number of multipliers
$\mathrm{H}(\mathrm{z})=\left\{1+\frac{1}{4} z^{-1}+\frac{1}{2} z^{-2}+\frac{1}{2} z^{-3}+\frac{1}{4} z^{-4}+z^{-5}\right\}$
c) Draw and explain the architecture of TMS 320C 5 X

9 a) Write notes on the following quantization errors

1. Truncation error
2. Round off error
b) Explain
3. Difference between von-Neumann architecture and Harvard architecture
4. Special instruction for DSP processor
c) Realize the system in parallel form described by the difference equation $y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)$
