Reg No.		D.: Name:	_
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019	
		Course Code: AE306 Course Name: DIGITAL SIGNAL PROCESSING	
Max. Marks: 100 Duration:			Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Find the DFT of a sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT algorithm.	(8)
	b)	Check if all the roots of the characteristic equation $z^3+0.25z^2+z+0.25=0$ lie within	(7)
		the unit circle using Jury's test.	
2	a)	State and explain sampling theorem	(3)
	b)	Find the nyquist rate of $x(t)=\sin 400\pi t+\cos^2 500\pi t$	(4)
	c)	Determine the Z transform and ROC of	(8)
		I. $x_1(n) = (2)^n \cos \omega n$	
		II. $x_2(n) = nu(n)$.	
3	a)	Find the DTFT of $x(n)=a^{ n }$	(3)
	b)	Find the inverse Z transform of $X(z) = \frac{z}{(z - \frac{1}{2})(z - 2)}$ for all possible ROC's.	(9)
	c)	Compare the computational complexities of DFT computation for N=16 using DIT FFT and direct method.	(3)
		PART B Answer any two full questions, each carries 15 marks.	
4	a)	Design an ideal digital differentiator with frequency response	(7)
		$H_d(e^{j\omega})=j\omega$ for $-\pi \le \omega \le \pi$ using rectangular window with N=8	

- b) For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$, determine H(z) using impulse (8) invariance method (Assume T=1 sec)
- a) Using bilinear transform, design a high pass filter, monotonic in pass band with cut (10) off frequency of 1000Hz, α_p =3dB and, α_s =10dB at 350Hz. The sampling frequency is 5000Hz
 - b) Design an ideal low pass FIR filter with $H_d(e^{j\omega})=1$ for $-\frac{\pi}{2} \le \omega \le \frac{\pi}{2}$ = 0 for $\frac{\pi}{2} \le |\omega| \le \pi$ (5)

Find h(n) for L=11 using direct truncation

F1048

- 6 a) Explain the classification of linear phase FIR filter (10)
 - b) Given the specification $\alpha_p=1$ dB, $\alpha_s=30$ dB, $\Omega p=200$ rad/sec and, $\Omega s=600$ rad/sec. (5) Determine the order of the filter.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Obtain the direct form I, direct form II, cascade and parallel realization of the

system H(z) =
$$\frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$
 (10)

- b) Draw and explain the architecture of TMS 320C 5X (10)
 8 a) Explain the von-Neumann architecture with a neat block diagram. (10)
 b) Realize the following FIR system function using minimum number of multipliers (5) H(z)={1+¹/₂z⁻¹+¹/₂z⁻² + ¹/₃z⁻³}{1 + ¹/₃z⁻¹}
 c) Explain the fixed point and floating point representation of numbers (5)
- c) Explain the fixed point and floating point representation of numbers (5)9 a) Explain (10)
 - I. Harvard architecture
 - II. Pipelining
 - b) Explain the effects of quantization and round off in digital filter coefficients (6)
 - c) Explain the errors resulting from rounding and truncating (4)
