\qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), MAY 2019

Course Name: DIGITAL SIGNAL PROCESSING
Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
Marks
1 a) Find the DFT of a sequence $x(n)=\{1,2,3,4,4,3,2,1\}$ using DIT algorithm.
b) Check if all the roots of the characteristic equation $z^{3}+0.25 z^{2}+z+0.25=0$ lie within the unit circle using Jury's test.
2 a) State and explain sampling theorem
b) Find the nyquist rate of $x(t)=\sin 400 \pi t+\cos ^{2} 500 \pi t$
c) Determine the Z transform and ROC of
I. $\quad x_{1}(n)=(2)^{n} \cos \omega n$
II. $\quad x_{2}(n)=n u(n)$.

3 a) Find the DTFT of $x(n)=a^{|n|}$
b) Find the inverse Z transform of $\mathrm{X}(\mathrm{z})=\frac{z}{\left(z-\frac{1}{2}\right)(z-2)}$ for all possible ROC's.
c) Compare the computational complexities of DFT computation for $\mathrm{N}=16$ using DIT FFT and direct method.

PART B

Answer any two full questions, each carries 15 marks.
4 a) Design an ideal digital differentiator with frequency response $\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{j} \omega$ for $-\pi \leq \omega \leq \pi$ using rectangular window with $\mathrm{N}=8$
b) For the analog transfer function $\mathrm{H}(\mathrm{s})=\frac{2}{(s+1)(s+2)}$, determine $\mathrm{H}(\mathrm{z})$ using impulse invariance method (Assume $\mathrm{T}=1 \mathrm{sec}$)
a) Using bilinear transform, design a high pass filter, monotonic in pass band with cut off frequency of $1000 \mathrm{~Hz}, \alpha_{p}=3 \mathrm{~dB}$ and, $\alpha_{s}=10 \mathrm{~dB}$ at 350 Hz . The sampling frequency is 5000 Hz
b) Design an ideal low pass FIR filter with $\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1$ for $-\frac{\pi}{2} \leq \omega \leq \frac{\pi}{2}$

Find $\mathrm{h}(\mathrm{n})$ for $\mathrm{L}=11$ using direct truncation

6 a) Explain the classification of linear phase FIR filter
b) Given the specification $\alpha_{p}=1 \mathrm{~dB}, \alpha_{\mathrm{s}}=30 \mathrm{~dB}, \Omega \mathrm{p}=200 \mathrm{rad} / \mathrm{sec}$ and, $\Omega \mathrm{s}=600 \mathrm{rad} / \mathrm{sec}$.

Determine the order of the filter.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Obtain the direct form I, direct form II, cascade and parallel realization of the

$$
\begin{equation*}
\text { system } H(z)=\frac{1+\frac{1}{3} Z^{-1}}{1-\frac{3}{4} Z^{-1}+\frac{1}{8} Z^{-2}} \tag{10}
\end{equation*}
$$

b) Draw and explain the architecture of TMS 320C 5X

8 a) Explain the von-Neumann architecture with a neat block diagram.
b) Realize the following FIR system function using minimum number of multipliers
$\mathrm{H}(\mathrm{z})=\left\{1+\frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}+\frac{1}{3} z^{-3}\right\}\left\{1+\frac{1}{3} z^{-1}\right\}$
c) Explain the fixed point and floating point representation of numbers

9 a) Explain
I. Harvard architecture
II. Pipelining
b) Explain the effects of quantization and round off in digital filter coefficients
c) Explain the errors resulting from rounding and truncating

