

		Pages	3							
		Scheme of Valuation/Answer Key	0							
(Scheme of evaluation (marks in brackets) and answers of problems/key)										
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY										
SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018										
	Course Code: EC370									
М		Course Name: Digital Image Processing	Harras							
IVI	ax. 1	PART A	Hours							
		Answer any two full questions, each carries 15 marks	Marks							
1	a)	Diagram – 3 Marks	(6)							
		Working – 3 Marks								
	b)) 2 Marks each $-2 \times 3 = 6$ Marks								
	c) 3 properties – 1 Mark each - 3 Marks									
2	a)	Recursive definition – 2 Marks. Application – 2 Marks	(4)							
		$H_{2N}=egin{bmatrix} H_N&H_N\ H_N&-H_N\end{bmatrix}=H_2\otimes H_N$								
	b)	Circulant and Toeplitz Matrix – Structure 1 marks each – 2 Marks								
		Example for each $-1x2$ Marks $= 2$ Marks								
	c)	$A_{mxn} = U_{mxm} \Sigma_{mxn} V_{nxn}^{T} - 2 Marks$	(7)							
		$AA^{T} = U \Sigma \Sigma^{T} U^{T}$ and $A^{T}A = V \Sigma^{T} \Sigma V^{T}$								
		U and V are the eigen vectors of AA^{T} and $A^{T}A$ respectively. To get U find the Eigen								
		value decomposition of AA^{T} . To get V find the Eigen value decomposition of $A^{T}A$.								
		Square root of the diagonal entries in the diagonal matrix $\Sigma \Sigma^T$ or $\Sigma^T \Sigma$								
		Obtained in these Eigen value decomposition give the singular values which give								
		the diagonal elements of $\Sigma - 5$ Marks								
3	a)	Statement – 2 Marks	(6)							
	Proof using convolution property of Fourier Transform – 4 Marks									
<u> </u>	b)	Forward kernel – 2 Marks	(5)							
	Reverse kernel – 1 Marks									
	Separable – Justification – 2 Marks									
1	1		1							

	c)	$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \mu_{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - 2 \text{ Marks } y = A (x - \mu_{x}) = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \end{pmatrix} - 2 \text{ Marks}$	3 (4)							
PART B										
Answer any two full questions, each carries 15 marks										
4	a)	2 point processing operations – 1 Marks								
		Graphs – 1 Mark each – 2 Marks								
		Explanation – 1 Mark each – 2 Marks								
	b)	Finding the histogram – 5 Marks(
		Histogram equalization – 5 Marks								
		$6 \ 6 \ 6 \ 6 \ 6$								
		$1 \ 6 \ 7 \ 6 \ 1$								
		1 7 7 7 1 APLANDUL KALAM								
5	a)	Any 2 differences $-1.5x^2$ Marks $= 3$ Marks (3)								
	b)	Block diagram – 2 Marks, Explanation - 2 Marks (4								
	c)	Limitations of Inverse filtering – 4 Marks (8								
		Wiener filtering – Elimination of very small H(u,v) issue. Explanation with proper								
		equations – 4 Marks								
6	a)	H(u,v) equations and frequency response plots - 2x2 = 4 Marks (5)								
		Explanation of something effects with these filters – 1 Mark								
	b)	Explanation -2.5 Marks each $-2x2.5 = 5$ Marks								
	c)	Separation of illumination and reflectance components in homomorphic filtering - (
		5 Marks								
		PART C								
7	a)	Answer any two full questions, each carries 20 marks Region splitting and merging steps – 6 Marks	(6)							
'	a) b)	$3x^2$ Marks - 6 Marks	(0)							
		5x2 Marks = 6 Marks								
	c)	Making to the parametric space – 2 Marks (8								
		Steps for computing the line – 6 Marks								
8	a)	Coding, inter pixel and psychovisual redundancy $-3+3+2=8$ Marks (8)								

	b)	KLT is the optimal transform but data dependent. But obtaining basis images in 4 (4						
		KLT is non trivial. DCT has good information packing ability and kernel is fixed.						
		2x2 = 4 Marks						
	c)	Arithmetic coding – 8 Marks			(8)			
9	a)	Clustering algorithm – 8 Marks						
	b)	Arrange the symbols in the decreasing order of their probabilities. – 2Marks						
		Combine the lowest probability symbols into a single compound symbol that						
		replaces them in the next source reduction – 3 Marks						
		Work backwards along the table to assign the codes to the elements of the compound						
		symbols. – 3 Marks						
		Symbol	Probability	Code				
		D AP	AND 0.6 ALAN	0				
		A	0.2	10				
		В	0.1	110				
		С	0.05	1110				
		Е	0.05	1111				
	c)	Any two edge detection masks 2x2 Marks = 4 Marks			(4)			
