|  | Scheme of Valuation/Answer Key <br> (Scheme of evaluation (marks in brackets) and answers of problems/key) |  |  |
| :---: | :---: | :---: | :---: |
| APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019 |  |  |  |
| Course Code: CE304 |  |  |  |
| Course Name: DESIGN OF CONCRETE STRUCTURES - II |  |  |  |
| Max. Marks: 100 |  | arks: 100 L | Duration: 3 Hours |
| PART A |  |  |  |
|  |  | Answer any two full questions, each carries 15 marks. | Marks |
| 1 | a) | Factored load and finding values of $\mathrm{Pu} / \mathrm{fck} \mathrm{bD}$ and $\mathrm{Mu} / \mathrm{fck} \mathrm{b} \mathrm{D}^{2}$ $\begin{align*} & \frac{P_{u}}{f_{c k} b D}=\frac{1050 \times 10^{3}}{20 \times 300 \times 600}=0.291 \\ & \frac{M_{u}}{f_{c k} D^{2}}=\frac{225 \times 10^{6}}{20 \times 300 \times 600^{2}}=0.104  \tag{3}\\ & \frac{d^{\prime}}{D}=\frac{50}{600}=0.083=0.1 \end{align*}$ <br> $f_{y}=250 \mathrm{MPa}$; Reinforcement equally on 2 sides; Chart 28 or reinforcement equally <br> on 4 sides Chart 40, Finding $p / f c k$, and $A s$ <br> Diameter and no. of bars <br> Design of lateral ties and spacing <br> Detailed cross section | (10) |
|  | b) | Calculation of additional moments- $\begin{aligned} & M_{a x}=\frac{P_{u} D}{2000}\left\{\frac{l_{e x}}{D}\right\}^{2} \\ & M_{a y}=\frac{P_{u} b}{2000}\left\{\frac{l_{e y}}{b}\right\}^{2} \quad \text { (reduction factor }- \text { optional)- (2) } \end{aligned}$ <br> Modified Initial moments $=0.4 M_{a 1}+0.6 M_{a 2}$ <br> Calculate moment due to minimum eccentricity and comparing with modified actual moments- greater value to be taken as initial moments for adding with the additional moments <br> Checking the section for axial load and biaxial bending | (5) |


| 2 | a) | Check for slenderness ratio - $\mathbf{1}$ <br> Check for min eccentricity -1 <br> Trial reinforcement and uniaxial moment capacities about $x$ - and $y$ - axes - 4 <br> Finding Puz and $\alpha$ n - 3 <br> Checking interaction equation -3 <br> Design of lateral ties and spacing - 2 <br> Detailing - 1 <br> Alternate Solution <br> Check for slenderness ratio - $\mathbf{1}$ <br> Check for min eccentricity -1 <br> Trial reinforcement and uniaxial moment capacities about $x$ - and $y$ - axes - 4 <br> Puz from Chart 63 <br> (3) <br> For given $\mathrm{Pu} / \mathrm{Puz}$ and Muy/Muy1, calculate Permissible Mux / Mux1 from Chart 64 <br> (3) <br> Design of lateral ties and spacing -2 <br> Detailing - $\mathbf{1}$ | (15) |
| :---: | :---: | :---: | :---: |
| 3 | a) | Total Load on footing including self weight $=2200 \mathrm{kN}$ <br> Calculation of base area and upward pressure <br> Thickness of footing based on one way shear <br> Check for two way shear (2) <br> Design of flexural reinforcement (both directions) <br> Check for Development length (1) <br> Detailing <br> (2) | 15 |
| PART B |  |  |  |
| Answer any two full questions, each carries 15 marks. |  |  |  |
| 4 | a) | Assuming value of $\phi=30^{\circ}$ <br> Depth of foundation $D_{f}=\frac{p}{\gamma}\left(\frac{1-\sin \phi}{1+\sin \phi}\right)^{2}=1.2 m$ <br> Proportioning the retaining wall with figure <br> F.O.S against overturning $=\frac{0.9 M_{R}}{M_{o}}>1.4$ | (15) |


|  |  | $\begin{equation*} \text { F.O.S against sliding }=\frac{0.9 \mu \sum W}{P_{a}}>1.4 \tag{2} \end{equation*}$ <br> Upward soil pressure diagram and check <br> Design and detail the heel slab - 3 <br> Design and detail the toe slab - 3 |  |
| :---: | :---: | :---: | :---: |
| 5 | a) | Circumstances - 2 <br> design procedure - $\mathbf{4}$ <br> Detailing- 4 | (10) |
|  | b) | Calculation of radius of sphere from span and rise (1) $\begin{array}{r} \text { Meridional stress }=\frac{w R(1-\cos \theta)}{t \sin ^{2} \theta}=\frac{w R}{t(1+\cos \theta)} \\ \text { Hoop stress }=\frac{w R\left(\cos ^{2} \theta+\cos \theta-1\right)}{t(1+\cos \theta)} \tag{3} \end{array}$ <br> If stresses are minimal, nominal reinforcement to be provided <br> Design of ring beam based on stress on equivalent area (1) | 5 |
| 6 | a) | Load calculation (w kN/m²) <br> For fixed edges, <br> At Centre, $M_{r}=\frac{w r^{2}}{16} \quad M_{\theta}=\frac{w r^{2}}{16}$ <br> At edges, $M_{r}=-\frac{w r^{2}}{8} \quad M_{\theta}=0$ <br> Check for depth <br> Reinforcement at centre <br> Reinforcement at edge- <br> Check for shear <br> Detailing | 15 |
| PART C |  |  |  |
| Answer any two full questions, each carries 20 marks. |  |  |  |
| 7 | a) | Volume $=500 \mathrm{~m}^{3}$ <br> Height and diameter of tank | (20) |


|  |  | As per IS 3370 (2), minimum strength of concrete for water tanks is M25. So, this can be mentioned and stresses for M25 can be adopted for the design. <br> Either fixed or hinged base can be assumed. <br> Assuming suitable thickness of wall, calculate $\mathrm{H}^{2} / \mathrm{Dt}$ <br> Hoop tension $=$ coefficient $(\mathrm{wHR})$ <br> Moment $=$ coefficient $\left(\mathrm{wH}^{3}\right)$ <br> Shear= coefficient $\left(\mathrm{wH}^{2}\right)$ <br> Design of horizontal rings based on Hoop tension (3) <br> Design of vertical reinforcement based on moment <br> Check for shear stress (1) <br> Design of base slab (As it is resting on ground, nominal thickness and minimum reinforcement can be provided <br> Detailing with haunches |  |
| :---: | :---: | :---: | :---: |
| 8 | a) | Listing - 3 <br> Immediate Losses include <br> i. Elastic Shortening of Concrete <br> ii. Slip at anchorages <br> iii. Friction between tendon and tendon duct, and wobble Effect <br> 2. Time Dependent Losses include <br> i. Creep and Shrinkage of concrete <br> ii. Relaxation of prestressing steel <br> Explanation - 2 | (5) |
|  | b) | $\begin{align*} & \text { Loss due to friction }=f_{0}(\mu \alpha+k x)=102.7 \mathrm{~N} / \mathrm{mm}^{2}  \tag{5}\\ & \text { Loss due to slip }=\frac{\delta}{L} E_{s}=70 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Total loss }-172.7 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Percentage loss }-17.2 \%  \tag{2}\\ & \text { Final force }=\mathrm{f} \mathrm{~A}=496.38 \mathrm{kN} \tag{3} \end{align*}$ | 15 |
| 9 | a) | Explanation-4 | 4 |



