Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), MAY 2019
Course Code: CS302
Course Name: DESIGN AND ANALYSIS OF ALGORITHMS

1 Best Case - 1 Mark, Worst Case - 1 Mark, Average Case - 1 Mark
2 Minimum value of $\mathrm{n}=15-1$ Mark. Steps -2 Marks
3 Master Theorem - all three cases - 1 mark each
4 Union Operation - 1 Mark, FIND-SET - 1 Mark, complexity - 1 mark

PART B

Answer any two full questions, each carries9 marks.
a) Fun1-O(n) - 1 Mark

Fun2-O(2 $\left.2^{\text {n }}\right)-1$ Mark
b) Solution : $\left(3^{\mathrm{k}+1}-1\right) / 2-1$ Mark

Steps - 2 marks.
c) Solution: $\mathrm{O}\left(\mathrm{n}^{2}\right)-1$ Mark.

Recursion Tree with Minimum 3 levels - 3 Marks
a) Best case Expression - 1.5 Marks

Worst case expression - 1.5 Marks, Both O(n)
b) Reason - 2 Marks.
$\mathbf{2}$ marks for specifying the rotations or explain any two rotations.
c) Minimum Height:3-1 Mark, Maximum Height : 4-1 Mark

7 a) Any two Properties - 2 Marks
b) $\mathbf{3}$ marks can be given for the correct construction of b-tree with at least $\mathbf{6}$ nodes. 4 marks for complete construction
c) $\mathbf{2}$ marks for correct deletion of atleast $\mathbf{2}$ keys . $\mathbf{3}$ marks for deletion of all the 5 keys

PART C
Answer all questions, each carries $\mathbf{3}$ marks.

8 False - 1 Mark,
Full marks (2)can be given for justifying the statement without providing an example.
$9 \quad 1.5$ marks each.
$10 \quad 2.5$ marks can be given for writing the algorithm alone. $\mathbf{0 . 5}$ marks for mentioning the complexity.(Detailed analysis not expected)
Definition - 1 mark, steps - 0.5 mark each.(2 marks)
PART D
Answer any two full questions, each carries 9 marks.
12 a) Full marks for stating shortest path problem or optimal substructure property
b) $\mathbf{3}$ marks can be given for writing the algorithm alone. 1 marks for mentioning the complexity.(Detailed analysis not expected)
c) Full(3) marks can be given for finding the shortest path from s to atleast $\mathbf{4}$ nodes.

13 a) $\mathbf{3}$ marks can be given for writing the algorithm alone. 1 marks for mentioning the complexity.(Detailed analysis not expected)
b) Algorithm steps - 5 marks.
a) Statement - 1 mark, Explanation of the procedure/algorithm using dynamic programming- 3 marks
b) Those who have attempted the question and obtained 4 correct paranthesization positions can be given full marks(5). For incorrect values, steps can be considered for grading

PART E

Answer any four full questions, each carries 10 marks.
15 a) Definition - 1 Mark, algorithm - 2 marks.
b) Statement - 1 mark, algorithm - 3 marks
c) Solution - 3 marks.; proportional marks for partial solutions

16 a) Algorithm - 4 marks, Complexity - 2 marks.
b) Comptutation of spanning tree - $\mathbf{4}$ marks. Steps need not be considered if tree is computed correctly. For incorrect computation, steps can be considered for giving proper weightage.
17 a) Solution : $\mathrm{n}^{2}-\mathrm{n}+1$ (3 marks) : with steps -4 Marks; For incorrect final
answer, proportional marks can be given for steps.
b) Solution : 10 (4 marks) with steps - 6 marks; For incorrect final answer, proportional marks can be given for steps.

18 a) Statement - 1 mark
Algorithm - 4 marks
b) State space tree - (4marks) : with Steps-5 marks ; For incorrect final state space tree, proportional marks can be given for intermediate tree construction

19 a) Algorithm - 5 marks
b) Full marks(5) can be given for partial solutions

20 a) Definition - 1 mark each
b) Steps - 4 marks.
c) Reducibility -2 marks, examples -2 marks.

