\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 V SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019
 Course Code: AE307
 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
Marks
1 a) Check whether the following signals are periodic. If periodic, find the fundamental time period. (i) $\quad x(t)=\cos (60 \pi t)+\sin (50 \pi t) \quad$ (ii) $\quad x(n)=$ $e^{j\left(\frac{2 \pi}{3}\right) n}+e^{j\left(\frac{3 \pi}{4}\right) n}$
b) Determine whether the following signals are energy or power signal. If it is an energy signal, find its energy. If it is a power signal, find its time-averaged power.

$$
x(t)=\left\{\begin{array}{cc}
5 \cos (\pi t), & -1 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

c) Sketch the waveforms of the following signals.
(i) $\quad x(t)=u(t+1)-2 u(t)+u(t-1)$
(ii) $y(t)=r(t+2)-r(t+1)-r(t-1)+r(t-2)$

2 a) For each of the following impulse responses, determine whether the corresponding system is memory less, causal and stable.
(i) $h(t)=\cos (\pi t) u(t)$
(ii) $h(t)=e^{-2 t} u(t-1)$
(iii) $h[n]=(-1)^{n} u[-n]$
b) Determine the homogeneous solution for the systems described by the following equations.
(i) $\frac{d^{2}}{d t^{2}} y(t)+6 \frac{d}{d t} y(t)+8 y(t)=\frac{d}{d t} x(t)$
(ii) $y[n]+y[n-1]+\frac{1}{4} y[n-2]=x[n]+2 x[n-1]$

3 a) Find the discrete time convolution sum of the following signals.
(i) $y[n]=\left(\frac{1}{4}\right)^{n} u[n] * u[n+2]$
(ii) $x(n)=\{2,-1,1,3\} ; \quad \mathrm{h}(\mathrm{n})=\{3,4,2\}$

PART B

Answer any two full questions, each carries 15 marks.
4 a) Explain the condition for distortion-less transmission through an LTI system.
b) State and explain sampling theorem for band-limited signals and aliasing.

5 a) State and prove Parseval's theorem for continuous time Fourier series.
b) Compute the DTFS coefficients of the following signals
(i) $\quad x[n]=\cos \left(\frac{6 \pi}{17} n+\frac{\pi}{3}\right)$
$x[n]=2 \sin \left(\frac{14 \pi}{19} n\right)+\cos \left(\frac{10 \pi}{19} n\right)+1$

6 a) Find the DTFT of $x(n)=(0.5)^{n} u(n)+2^{-n} u(-n-1)$.
b) Find the time domain signal associated with FS coefficients $X(k)=$ $\left(\frac{-1}{3}\right)^{|k|} ; \omega_{0}=1 \mathrm{rad} / \mathrm{sec}$
c) State and prove time shifting property of CTFT.

PART C

Answer any two full questions, each carries 20 marks.
7 a) Find the bilateral Laplace transform and ROC of the following signals.
(i) $x(t)=e^{a t} u(t)$
(ii) $x(t)=e^{5 t} u(-t+3)$
b) Find the Z-transform, ROC and pole-zero location of the following signals.
(i) $x(n)=a^{|n|} ;|a|<1$
(ii) $\left(\frac{1}{2}\right)^{n} u[n]+\left(\frac{-1}{3}\right)^{n} u[n]$

8 a) Using the Laplace transform, find the impulse response of an LTI system described by differential equation $\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)$
b) Write a short note on how causality and stability of an LTI system are characterized by Laplace transform of its impulse response.
c) (i) Find the Z-transform of the following signal

$$
\begin{equation*}
x[n]=(1 / 2)^{n} u[n] * 2^{n} u[-n-1] \tag{10}
\end{equation*}
$$

(ii) Find the time domain signal corresponding to the Z transform.

$$
\begin{equation*}
X(z)=\frac{1+\frac{7}{6} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{3} z^{-1}\right)},|z|>\frac{1}{2} \tag{10}
\end{equation*}
$$

9 a) Assuming ROC as right half planes, find the inverse Laplace transform of
(i) $X(s)=\frac{s}{s^{2}+5 s+6} \quad$ (ii $X(s)=\frac{5 s+4}{s^{3}+3 s^{2}+2 s}$
b) Find the inverse Z-transform of
$X(z)=\frac{1+\frac{7}{6} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{3} z^{-1}\right)}$, with ROC $\quad 1 / 3<|z|<1 / 2$
c) Determine (i) difference equation representation of the system with the following impulse response, and (ii) its transfer function.

$$
h(n)=(1 / 3)^{n} u[n]+(1 / 2)^{n-2} u[n-1]
$$

