E192056

(5)

Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: AE303

Course Name: ELECTRICAL MEASUREMENTS AND MEASURING INSTRUMENTS Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

Name:

- 1 a) Define the term standards in measurement and explain the following terms with (5) applications a) Absolute standards b) Working standards
 - b) Explain loading effect.

Prove that when a voltmeter is connected to a circuit, the measured voltage is

$$E_L = \frac{E_0}{1 + \frac{Z_L}{Z_0}}$$

Where E_0 is the voltage at no load, Z_0 is the output impedance, Z_L is the input impedance voltmeter. How we reduce the loading effect in voltmeter.

- c) Define accuracy, precision and resolution. Explain how they are related. (5)
- 2 a) Explain shunts and multipliers in measuring instruments. (7)
 - b) Sketch and briefly describe the construction and working of an electrostatic type (8) instrument.
- 3 a) Explain different types of errors in measurement. Suppose a voltmeter measures (8)
 10.00 V which is known to have ±0.2 V error, find the absolute and relative error.
 - b) b) With neat sketch describe the working of any one type of galvanometer. (7)

PART B Answer any two full questions, each carries 15 marks.

4 a) Draw the circuit of a Wheatstone 's bridge and derive the balance equation for dc (8) bridge. Find also the expression for current through galvanometer for a small unbalance

E192056

	b)	Explain the working of a Carey foster slide wire bridge.	(7)
5	a)	Derive the equation for balance in Maxwell's inductance capacitance bridge and	(7)
		explain the limitations of Maxwell's inductance capacitance bridge.	
	b)) Describe the principle and working of a polar type potentiometer.	(8)
6	a)	Draw a neat diagram of Kelvin's double bridge. A Kelvin's double bridge is	(7)
		balanced with following constants. Outer arm ratio = 100Ω and 1000Ω , inner	
		arm ratio = 99.92 Ω and 1000.6, Resistance of link = 0.1 Ω , Standard resistance =	
		0.00377Ω . Calculate the value of unknown resistance.	
	b)	Draw the diagram of a Vernier potentiometer and explain its working	(8)

PART C

Answer any two full questions, each carries 20 marks.

7	a)	Describe the working of a digital storage oscilloscope with block diagram	(8)
	b)	Explain the working of X-Y recorder.What is the difference between X- Y and	(7)
		strip chart recorders.	
	c)	How frequency and phase of a signal measured using CRO	(5)
8	a)	Explain the working of spectrum analyzer and give its applications	(8)
	b)	Give note on different types of energy meters	(7)
	c)	Write note on true RMS meter	(5)
9	a)	With block diagram describe the working of a sampling oscilloscope	(10)
	b)	Explain the principle and working of a Q meter. Also outline the factors that	(10)
		cause errors during a Q measurement.	
