Pages:2

Reg No.:__

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: EC202

Course Name: SIGNALS & SYSTEMS

Max. Marks: 100

3

PART A

Duration: 3 Hours

Answer any two full questions, each carries 15 marks.

- Check whether the following signals are periodic or not. If periodic, find the fundamental 1 (8)a) (i) $x(t) = sin(200\pi t) + cos(150\pi t)$ (ii) $x[n] = sin(0.15\pi n) + cos(0.1\pi n)$ period.
 - Check whether the system, $y(t) = x^2(2t)$ is (7)b) (ii) Time-Invariant (iii) Causal (iv) Stable. (i) Linear
- $\begin{cases} t+1; -1 \le t \le 0\\ 1-t; \ 0 \le t \le 1\\ 0 \ ; otherwise \end{cases}$ 2 (12)a) h(t) = u(t-1) - u(t-3)Given $\mathbf{x}(t) =$ Find y(t) = x(t) * h(t); where '*' denotes convolution. Also plot x(t), h(t) and y(t)

 - Check the causality and stability of the LTI system with impulse response (3) b)

$$h(t) = e^{-2t}u(t+2)$$

a) Given $x(t) = u(t+1) + u(t-1) - u(t-2) - u(t-4).$ (8)

Plot (i)
$$x(t)$$
 (ii) $x(t-3)$ (iii) $x(2t)$ (iv) $x(2t-3)$

- b) What is the condition for two signals x(t) and y(t) to be orthogonal? Give example of two (3)signals which are orthogonal.
- Show that the output of an LTI system with impulse response h[n] to the input x[n] is the c) (4) convolution sum of *x*[*n*] and *h*[*n*].

PART B

Answer any two full questions, each carries 15 marks.

- State the conditions for convergence of Fourier Series. Also give an example (with (9) 4 a) waveform) each, for the signals that does not satisfy the conditions.
 - Find the Fourier Transform of the following signal x(t). b)

Marks

(6)

D192019

(4)

5	a)	Find the transfer function and ROC of the causal system represented by following differential	(9)
		equation. Also, find the impulse response of the system.	
		$\frac{d^2 y(t)}{dt^2} + 9\frac{dy(t)}{dt} + 18 y(t) = x(t)$	
	b)	(i) Find the Nyquist rate and Nyquist interval for the signals (a) sinc $(100\pi t)$ and b) sinc	(6)
		$(100\pi t) + sinc(50\pi t).$	
6	a)	What is ROC of Laplace Transform? State any 5 properties of ROC.	(7)
	b)	How do we find magnitude response and phase response of an LTI system with impulse	(4)
		response $h(t)$? What information about the system do they convey?	
	c)	What is aliasing? When does aliasing occur? How can we avoid aliasing?	(4)
		PART C	
Answer any two full questions, each carries20 marks.			
7	a)	Solve the following difference equation using Z-transform	(8)
		y[n] = 7y[n-1]-12y[n-2]+2x[n]-x[n-2] for the input $x[n]=u[n]$.	
	b)	Find Discrete Time Fourier Series coefficients of the periodic sequence $x[n] = \begin{cases} 1; & 0 \le n \le 4 \\ 0; & 5 \le n \le 7 \end{cases}$	(8)
	c)	with fundamental period $N = 8$. Establish the relationship between DTFT and Z-transform	(4)
8	a)	Find the Z transform and ROC of the following sequences: δ[n] 2ⁿ u[n] u[n]-u[n-3] sin[ω₀n]u[n] 	(16)
	b)	State whether the system with following transfer function is (i) causal (ii) stable. Give reason. $H(z) = \frac{1}{1 - 2.5z^{-1} + z^{-2}}; \text{ ROC: } 0.5 < z < 2$	(4)

9 a) Find the inverse z-transform using partial fraction method.

$$X(z) = 0.25z^{-1}/(1-0.5z^{-1})(1-0.25z^{-1});$$
 ROC: $|z| > 0.5$

b) Find DTFT of
$$x[n] = \begin{cases} 1; & 0 \le n \le 4\\ 0; & Otherwise \end{cases}$$
 (6)

c) The impulse response of an LTI system in given by $h[n] = (0.3)^n u[n]$. Find the output y[n] (10) of the system using Discrete Time Fourier Transform, for the input $x[n] = 2(0.1)^n u[n]$
