\qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), MAY 2019
Course Code: EC202
Course Name: SIGNALS \& SYSTEMS
Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
1 a) Given the signal $x(t)$. Sketch the signals:
(i) $2 x(-2 t+3)$ and (ii) $y(t)=x(t) \delta(t-0.5)+x(t) \delta(t+0.5)$

b) Check whether the following signal is periodic or not. If periodic find the period.

$$
\begin{equation*}
x(t)=3 \operatorname{Sin} 200 \pi t+4 \operatorname{Cos} 100 \pi t \tag{7}
\end{equation*}
$$

c) An LTI system is characterized by the impulse response $h(n)=[1,2,1]$. Find the system response for the given input $x(n)=[3,-1,2,0,1]$.
2 a) Determine whether the following signal is energy or power signal and calculate its
energy or power.

$$
x(\mathrm{t})=\cos t
$$

b) Mathematically analyse the following LTI system for stability and causality.

$$
\begin{equation*}
h(n)=a^{n} u(n),|a|<1 \tag{7}
\end{equation*}
$$

c) An LTI system has the impulse response $h(n)=u(n)-u(n-3)$. Find the output of the system to the input $x(n)=\left(\frac{1}{3}\right)^{n} u(n)$.
3 a) Derive the relation between correlation and convolution between two sequences.
Find the cross correlation of two finite length sequences $x(n)=[1,3,2,2]$ and $y(n)=[1,2,3,2]$.
b) Distinguish between causal and non-causal systems with suitable examples.
c) Find the even and odd components of the following signals

1) $\left.e^{j t} 2\right) \cos t+\sin t+\cos t \sin t$

PART B

Answer any two full questions, each carries 15 marks.
4 a) Derive the relation between Laplace transform and Continuous Time Fourier transform.
b) Evaluate the Fourier Transform of $x(t)=\operatorname{sgn}(t)$. Plot magnitude and phase response.
c) An LTI system is characterized with the transfer function $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}+5}{\mathrm{~s}^{2}+3 \mathrm{~s}+2}$. Find the response of the system to the input $x(t)=\cos 2 t u(t)$.
d) State Sampling theorem. Compute the Nyquist rate of the signal $x(t)$.

$$
\begin{equation*}
x(t)=\cos \left(\frac{\pi t}{2}\right)-\sin \left(\frac{\pi t}{8}\right)+\cos \left(\frac{\pi t}{4}+\frac{\pi}{3}\right) \tag{4}
\end{equation*}
$$

5 a) Determine the Fourier Series Representation for $\mathrm{x}(\mathrm{t})=2 \sin (2 \pi \mathrm{t}-3)+\sin (6 \pi \mathrm{t})$.
b) Show that the spectrum of the sampled signal is the infinite sum of shifted replicas of the spectrum of original signal.
c) Evaluate the Fourier Transform of $\left.\mathrm{x}(\mathrm{t})=\frac{\mathrm{d}(\mathrm{te}}{} \mathrm{e}^{-2 \mathrm{t}} \sin (\mathrm{t}) \mathrm{u}(\mathrm{t})\right)$.

6 a) A causal LTI system has an impulse response $h(t)=e^{-4 t} u(t)$. Using Fourier transform find,
(i) Frequency response of the system.
(ii) Output of the system for an input $x(t)=3 e^{-t} u(t)$.
b) State and prove the following properties of Laplace Transform
(i) Time domain differentiation
(ii) Final value theorem
c) Find the Inverse Fourier transform of the following signals
(i) $\frac{1}{j \Omega(j \Omega+1)}+2 \pi \delta(\Omega)$
(ii) $2 \pi \delta(\Omega)+\pi \delta(\Omega-4 \pi)+\pi \delta(\Omega+4 \pi)$

PART C
Answer any two full questions, each carries 20 marks.
7 a) Find the Z - transform of $x(n)=2(3)^{\mathrm{n}} \mathrm{u}(-\mathrm{n})$
b) Compute the DTFT of the signal $x(n)$.

$$
x(n)= \begin{cases}10 ;|n| \leq N \tag{4}\\ 0 & ;|\operatorname{nn}|>N\end{cases}
$$

c) Prove that, for a BIBO stable discrete time LTI system the ROC of system function includes unit circle.
d) An LTI system is described by the following input-output relation $y(n)-\frac{9}{4} y(n-1)+\frac{1}{2} y(n-2)=x(n)-3 x(n-1)$.

Determine the impulse response of the system with specified ROCs of $\mathrm{H}(\mathrm{z})$ for the conditions:
(i) System is stable
(ii) System is causal

8 a) Find the discrete time Fourier series coefficients of the signal $x(n)=5+$ $\sin \left(\frac{n \pi}{2}\right)+\cos \left(\frac{n \pi}{4}\right)$. Plot the magnitude and phase spectrum.
b) Find all possible time domain signals for the Z- transform $X(z)=\frac{1}{1-\frac{1}{6} Z^{-1}-\frac{1}{6} z^{-2}}$.
c) A stable and causal LTI system produces an output $y(n)=n\left(\frac{4}{5}\right)^{n} u(n)$, for the excitation $x(n)=\left(\frac{4}{5}\right)^{n} u(n)$. Using Discrete Time Fourier transform,
(i) Determine the Frequency response of the system.
(ii) Derive the difference equation relating the input and output.

9 a) Using Z- transform, determine the output of an LTI system with impulse response $h(n)=\{1,2,-1,0,3\}$ for the input $x(n)=\{1,2,-1\}$.
b) Determine the Discrete Time Fourier transform of $x(n)=\left(\frac{1}{2}\right)^{n} \sin \left(\frac{n \pi}{4}\right) u(n)$.
c) Compute the Z-transform and ROC of the signal $x(n)=\left(\frac{1}{2}\right)^{n} u(-n)-2^{n} u(-n-1)$.

Plot the pole-zero pattern.
d) Mathematically explain how DTFT is related with Z- transform.

