Duration: 3 Hours

7

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: CH202

Course Name: PROCESS HEAT TRANSFER

Max. Marks: 100

PART A

Answer any two questions. Each question carries 15 marks.

- - b) Derive the expression for critical thickness of insulation for a spherical system.
- 2 a) The composite wall of a furnace consists of an inner layer of silica brick, 15 cm 8 thick (k =1.04W/m⁰C) and an outer layer of insulating brick, 20 cm thick (k =0.2 W/m⁰ C). The inside temperature of the furnace is 800⁰ C and the interface temperature is 705⁰ C. Calculate (a) the rate of heat loss through the furnace wall (b) the outside temperature of the insulating brick layer.
 - b) Derive the expression for temperature distribution in a solid undergoing transient 7 heat flow with negligible internal resistance.
- 3 a) Describe the development of velocity and thermal and boundary layers for flow 8 over a flat plate.
 - b) State Fourier's Law of heat conduction.
 - c) Define thermal conductivity and thermal diffusivity.

PART B

Answer any two questions. Each question carries 15 marks

- 4 a) Using dimensional analysis develop a relationship between Nu, Re, Pr for forced 8 convection heat transfer.
 - b) State and explain laws of black body radiation.
- 5 a) Ethylene glycol at 60 0 C with a mean velocity of 4cm/s enters a 6m long heated 8 section of a thin walled 2.5 cm ID tube after passing through an isothermal calming section. In the heated path the tube wall is maintained at a uniform temperature of 100 0 C by condensing steam on the outer surface of the tube. Calculate the exit temperature of glycol. At 60 0 C properties of ethylene glycol are Cp= 2564 J/kg K,

7

2

5

D192014

 $\rho = 1.088 \text{ kg/m}^3$, $v= 4.75 \text{ x} 10^{-6} \text{ m}^2/\text{s}$, $k= 0.26 \text{ W/m}^0\text{C}$, Pr = 51.

- b) With a neat diagram describe the basic construction of a shell and tube heat 7 exchanger.
- 6 a) Develop the expression for Reynold's analogy between momentum and heat 8 transfer. State the assumptions properly.
 - b) Water at the rate of 4080 kg/hr is heated from 35 0 C to 75 0 C by an oil having a 7 specific heat of 1900 J/kg K. The exchanger is of a counter flow double pipe design. The oil enters at 110 0 C and leaves at 75 0 C. Determine the area of the heat exchanger necessary to handle this load if the overall heat transfer coefficient is 320 W/m²K.

PART C

Answer any two questions. Each question carries 20 marks.

- 7 a) Derive the expressions for temperature distribution and heat flux for an infinitely 10 long fin of uniform cross section.
 - b) Using a boiling curve describe the regimes of pool boiling. 10
- 8 a) Describe the construction and operation of (i) Short tube vertical evaporator
 10 (ii) Falling film evaporator.
 - b) Compare and contrast dropwise and filmwise condensation. 10
- 9 a) Describe the different feeding arrangements in multiple-effect evaporators. Also 10 discuss their merits and demerits.
 - b) Briefly describe (i) Critical heat flux for nucleate pool boiling (ii) Factors affecting 5 condensation.
 - c) Bring out the significance of (i) Bond No. (ii) Jakob No. 5