\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R\&S), MAY 2019

Course Code: MA204
Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS (AE, EC)
Max. Marks: 100
Duration: 3 Hours

Normal distribution table is allowed in the examination hall.
 PART A

Answer any two full questions, each carries 15 marks
1 a) The probability mass function of a random variable X is given below:

x	0	1	2	3
$f(x)$	c	$2 c^{2}$	c^{2}	$3 c^{2}$

Determine (i) the value of c
(iii) $P[x>1 /(0<x<3)]$
(iv) $E(X)$
b) The probability of an item produced by a certain machine will be defective is 0.05 .

If the produced items are sent to the market in packets of 20, find the number of packets containing (i) atleast 2 (ii) exactly 2 (ii) atmost 2 defective items in a consignment of 1000 packets using Poisson distribution.

2 a) The mileage which a car owner gets with a certain kind of tyre is a random variable having an exponential distribution with mean $60,000 \mathrm{~km}$ Find the probabilities that one of these tyres will last,
(a) at least $55,000 \mathrm{~km}$
(b) atmost $65,000 \mathrm{~km}$
b) A random variable X follows uniform distribution in $(-3,3)$. Find
(i) $P(|X|<2)$
(ii) $P(|X-2|<2)$
(iii) $P(|X|>1)$
(iv) the value of K for which $P(X>k)=\frac{1}{3}$

3 a) Fit a binomial distribution to the following data:

x	0	1	2	3	4	5	6
f_{i}	5	18	28	12	7	6	4

b) In an examination 30% of the candidates obtained marks below 40 and 10% of the candidates got above 75 marks. Assuming that the marks are normally distributed, find the mean and standard deviation of the distribution.

PART B

Answer any two full questions, each carries 15 marks

4 a) The life time of a certain type of electric bulbs may be considered to follow exponential distribution with mean 50 hrs . Use central limit theorem to find the approximate probability that 100 of these electric bulbs will provide a total of more than 6000 hrs of burning time.
b) The joint density function of two continuous random variables X, Y is given by $f(x, y)=\left\{\begin{array}{cc}K(1-x-y), & 0<x<\frac{1}{2} ; 0<y<\frac{1}{2} \\ 0, & \text { otherwise } .\end{array}\right.$
Find (i) the value of K (ii) $P\left(X<\frac{1}{4}, Y>\frac{1}{4}\right)$ (iii) the marginal distributions of $X, Y(i v)$ check whether X, Y are independent.

5 a) Let $X(t)=A \cos \omega t-B \sin \omega t$, where A and B are independent random variables following $N\left(0, \sigma^{2}\right)$. Then show that $\{X(t)\}$ is WSS.
b) Find the power spectral density function of the WSS process whose autocorrelation function is $e^{-\propto \tau^{2}}$.

6 a) The joint probability distribution of X and Y is given by $f(x, y)=\frac{2 x+3 y}{54}$ for $x=1,2 ; y=1,2,3$. Find (i) the marginal distributions of X and Y (ii) The conditional distribution of X for $Y=y$.
b) The power spectral density of a WSS process is $\frac{\omega^{2}+9}{\omega^{4}+5 \omega^{2}+4}$. Find the autocorrelation function and power of the process.

PART C
Answer any two full questions, each carries 20 marks
7 a) The tpm of a Markov chain with 4 states $0,1,2,3$ is given by
$P=\left[\begin{array}{llll}0.2 & 0.8 & 0 & 0 \\ 0 & 0.2 & 0.8 & 0 \\ 0 & 0 & 0.2 & 0.8 \\ 0 & 0 & 0 & 1\end{array}\right]$
with initial distribution $P\left\{X_{0}=i\right\}=\frac{1}{3}, i=0,1,2,3$.
Find (i) $P\left\{X_{1}=2 / X_{0}=1\right\}$
(ii) $P\left\{X_{2}=3 / X_{0}=1\right\}$
(iii) $P\left(X_{2}=3, X_{1}=2, X_{0}=2\right)$
(iv) $P\left\{X_{2}=3\right\}$
b) The tpm of a Markov Chain is $P=\left[\begin{array}{ll}0 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$. Find the steady state distribution of the chain.
c) A radioactive source emits particles at the rate of 6 per minutes in accordance with Poisson process. Each particle emitted has a probability of $\frac{1}{3}$ being recorded. Find the probability that atleast 5 particles are recorded in 5 minutes.
8 a) Evaluate $\int_{4}^{5.2} \log _{e}(x) d x$ using Simpson's $1 / 3^{\text {rd }}$ rule. (Take $h=0.2$)
b) Use Newton's forward interpolation formula to evaluate $y(23)$ from the following data:

x	20	25	30	35	40	45
y	34.3	32.1	29.3	25.6	22.7	21.9

c) Use Runge-Kutta method of order 4 to find $y(0.2)$ for the differential equation:

$$
y^{\prime}=3 x+0.5 y, y(0)=1 .(\text { Take } \mathrm{h}=0.2)
$$

9 a) A house wife buys 3 types of cereals A, B, and C. She never buys the same cereals in successive weeks. If she buys cereal A, next week she buys B. However, if she buys B or C, next week she is 3 times as likely to buy A as the other cereals. In the first week of May she buys cereal C. Then what is the probability that (i) in the second week she buys cereal A (ii) In the third week she buys cereal C (iii) In the long run, how often she buys cereal B.
b) Use Lagrange's interpolation formula to find $y(2)$ from the following table:

x	1	3	4
y	1	27	64

c) Evaluate cube root of 41 correct to four decimal places using Newton- Raphson method correct to 4 decimal places.

