Reg No.:_____ Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: CS204

		Course Name: OPERATING SYSTEMS					
Ma	Max. Marks: 100 Duration: 3 H						
		PART A					
1		Answer all questions. Each carries 3 marks. Why does an Operating System require dual mode operations?	3				
2		Write short notes on clustered systems	3				
3		With the help of a suitable example, explain process creation.	3				
4		Differentiate between Short term, Medium term and Long term schedulers	3				
		PART B Answer any two questions. Each carries 9 marks.					
_	\	· -	4				
5	a)	Discuss any two Kernel Data structures	4				
	b)	Explain briefly any five services provided by an OS.	5				
6	a)	Explain the process of booting.	5				
	b)	What is context switch? Why context switch is considered to be an overhead to the					
		system?	4				
7	a)	List out the List out the advantage of process cooperation	3				
		How IPC using shared memory is implemented using Bounded buffer	6				
		PART C					
		Answer all questions. Each carries 3 marks.					
8		What are the requirements to be satisfied by the solution to the critical section	3				
		problem?					
9		Explain Dining Philosophers problem.	3				
10		Write any three criteria to be considered for comparing CPU scheduling	3				
		algorithms?					
11		What is the limitation of multilevel queue scheduling? How it is overcome in	3				
		multilevel feedback queue scheduling					
		PART D					
12		Answer any two questions. Each carries 9 marks. Define semaphore with its operations. What are the two types of Semaphores?	9				
13	a)	How indefinite blocking can be solved in priority scheduling	3				
	b)	Find the average waiting time for pre-emptive and non pre-emptive SJF scheduling					
		for the following set of processes					

		Process	Arrival time	Burst time			
		P1	0		8		
		P2	2		4		
		P3	4		9		
		P4	5		5	6	
14		Consider the following snapshot of a system					
		Process	Allocation	Max	Available		
			ABCD	ABCD	ABCD		
		P0	0 0 1 2	0 0 1 2	1 5 2 0		
		P1	1 0 0 0	1 7 5 0			
		P2	1 3 5 4	2 3 5 6			
		P3	0 6 3 2	0 6 5 2			
		P4	0 0 1 4	0 6 5 6			
		Answer the	following questions using	g Bankers algorithm			
		a. What is the content of " <i>Need</i> " matrix?					
		b. Is the system in a safe state? Justify your answer.				4	
		c. If a reque	est from P1 arrive for (0 4	2 0), can the request	be granted immediately	3	
		PART E					
		Answer any four questions. Each carries 10 marks.					
15	a)	Explain the concept of paging. 4					
	b)	With the help of a diagram, explain logical address to physical address translation 6					
		in paging. Illustrate with an example.					
16	a)	Describe contiguous memory allocation. 5				5	
	b)	Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 5 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.					
17	a)	Explain Optimal page replacement and LRU algorithms for page replacement 3				3	
	b)	Find the number of page faults for the following page reference string with 3 page					
		frames for Optimal page replacement and LRU algorithms.					
		2 3 4 2 1	3 7 5 4 3			7	
18	a)	Explain "El	evator" algorithm for disk	scheduling with exa	mple.	4	
	b)	Total cylinders in a disk is 5000 [0-4999]. Header is at position 143; previous					
		request is fo	or 125, request queue is 86	5,1470, 913, 1774, 94	8, 1509, 1022, 1780, 130		

C		D192037	Pages:3	
		Find the seek time for		
		(i) FCFS	3	
		(ii) SSTF	3	
19	a)	Briefly explain about file attributes	4	
	b)	Explain any two file allocation methods	6	
20	a)	Explain protection goals and principles of Operating System.	5	
	b)	How protection is implemented using access matrix?	5	