Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S),DECEMBER 2019
Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer all questions, each carries 5 marks

1 a) Convert 9B30 16 to decimal .
b) Subtract $5 \mathrm{C}_{16}$ from 94_{16}.

2 Convert $\mathrm{Y}=\mathrm{AB}+\mathrm{B}^{\prime} \mathrm{CD}$ into a product of max terms by algebraic method. 5

3 Design a full subtractor and show that it can be realized using two half 5 subtractors.

4 Realize an S-R flip flop using D flip flop.
5 What is the importance preset and clear pin in flip flops? How they are utilised when designing a counter .

6 Explain Moore state machine model 5

7 Draw the schematic of a successive approximation A/D converter and explain 5 working
8 Differentiate ROM, PLA and PAL circuits
PART B
Answer any two questions, each carries 10 marks
b) Convert 1010.011_{2} into decimal number
c) Add the hexadecimal numbers $\mathrm{DF}_{16}+\mathrm{AC}_{16} \quad 4$

10 a) Differentiate the methods of binary subtraction using 1's complement and 2's 5 complement methods with suitable example.
b) Obtain the canonical product of sum form of the following function;

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)(\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{C}^{\prime}\right)
$$

11 a) Apply De-Morgan's theorems to the following expression $(\mathrm{ABC})^{\prime}+\left(\mathrm{D}^{\prime}+\mathrm{E}\right)^{\prime} \quad 5$
b) Using karnaugh map, simplify the expression
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,5,7,8,13)+\mathrm{d}(1,6,12)$

PART C
 Answer any two questions, each carries 10 marks

12 a) Design a full adder circuit with decoder I C
b) Realize a 4 bit parallel binary adder with look ahead carry generator 5

13 a) Implement the function $F(A, B, C, D)=\sum(0,1,3,4,8,9,15)$ using a suitable 5 multiplier
b) What is the race around condition of a J-K flip flop? How can it be avoided 5

14 a) Show how a T flip flop can be converted to S-R flip flop 5
b) Draw a parallel in -serial out (PISO) register and explain its working 5

PART D

Answer any two questions, each carries 10 marks
15 a) Explain why Johnson counter have decoding gates, where as Ring counter does 5 not?
b) Explain the design of a synchronous counter with modulus $<2^{n}$, take MOD -5 5 counter as an example to illustrate

16 a) Construct a Johnson counter for 12 timing sequences. 5
b) Describe flash ADC and integrating type ADC 5

17 a) Design and implement a half adder and a full adder using VHDL 5
b) Explain FPGA and what are the advantages of FPGA over other types of PLD 5

