Re	eg No	D.: Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019	
		Course Code: CH208	
		Course Name: CHEMISTRY FOR PROCESS ENGINEERING II (CH)	
M	ax. I	Marks: 100 Duration: 3 H	lours
		PART A Answer any two questions. Each question carries 15 marks.	
1	a)	Describe the theory and instrumentation behind the potentiometric estimation of	6
		Fe ²⁺ using standard Ce ⁴⁺ solution	
	b)	Anodic stripping voltammetry is a sensitive analytical technique. Justify the	4
		statement by explaining the principle and applications.	
	c)	Draw a labelled schematic diagram of mass spectrometer and explain its working	5
2	a)	Compare the theory and working principle of X-ray photon electron spectroscopy	7
		and Auger electron spectroscopy.	
	b)	What are the two types of imaging modes in SEM analysis? How they are	3
		obtained?	
	c)	Explain the Amperometric titration of lead ions using standard i) sulphate solution	5
		and ii) dichromate solution	
3	a)	Calculate the amount of copper deposited at cathode during the electrolysis of 1M	3
		CuSO ₄ solution through which 10A current passed for 600s. (atomic mass of Cu=	
		63.5)	
	b)	Give the principle and any two applications of polarographic analysis	5
	c)	How atomic emission spectroscopy is useful in estimating the trace amount of	7
		elements? Explain with a schematic diagram of the spectrometer.	
		PART B	
4	a)	Answer any two questions. Each question carries 15 marks What is critical solution temperature? Draw the phase diagram of water-nicotine	4
		system and mark CST	
	b)	Derive Nernst distribution law from thermodynamic considerations	6

c) State and explain Kohlarausch's law. Calculate λ_m^{∞} of NH₄OH. Given that λ_m^{∞} of 5 NH₄Cl, NaOH and NaCl are 129.8, 218.4 and 108.9 Scm² mol⁻¹ respectively.

D1070

5	a)	Explain the principle and applications of solvent extraction.	5
	b)	Explain Debye Huckel theory of strong electrolytes. Write DHO equation and	5
		describe the variation of molar conductance with concentration.	
	c)	Give the working principles of i) urea biosensor and ii) glucose biosensor	5
6	a)	Derive the Nernst equation for the concentration cell $Zn/Zn^{2+}(C_1)//Zn^{2+}(C_2)/Zn$.	4
		Calculate the EMF of this cell if $E_{Zn2+/Zn}^0$ = -0.76V, C ₁ =0.01M, C ₂ = 0.1M	
	b)	Define the term transport number of an ion. How it is related to the ionic mobility?	3
	c)	Explain the principles and applications of i) Park's process and ii) steam distillation	8
		PART C	
7	a)	Answer any two questions. Each question carries 20 marks. Derive Gibbs adsorption isotherm and explain the term surface excess	10
	b)	Calculate the half life of a radioactive element if the 30% the substance decayed	5
		after a period of 250 min.	
	c)	Illustrate nuclear fission with an example. How can we explain the mechanism of	5
		fission using liquid drop model?	
8	a)	Derive Langmuir adsorption isotherm.	6
	b)	State and explain i) Hardy Schultz rule and ii) Gold number	4
	c)	Explain the principles and applications of i) neutron activation analysis and ii) radio	10
		dating techniques	
9	a)	How the surface area of the adsorbent is calculated using BET equation?	5
	b)	Define the term emulsion. Give the classification and any four applications of	5
		emulsions	
	c)	Explain the term binding energy of nucleus? How will you relate the binding	4
		energy with the stability of nucleus?	
	d)	Differentiate between transient and secular equilibria with proper equations	6