$\qquad$

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019 <br> Course Code: CE207 <br> Course Name: SURVEYING 

Max. Marks: 100
Duration: 3 Hours

## PART A <br> Answer any two full questions, each carries 15 marks.

1 a) Define local attraction. Which are the different methods of eliminating local attraction in a closed traverse?
b) The following consecutive readings were taken with a level and 5 m levelling staff on a continuously slopping ground at a common interval of $20 \mathrm{~m},: 0.385$, $1.030,1.925,2.825,3.730,4.685,0.625,2.005,3.110,4.485$. Prepare a page of field book and calculate the reduced level of points if first reading was taken on a bench mark of RL 208.125 m .

2 a) Define bearing. Which are the different systems of designating bearings?
b) Distinguish between dip and declination, isogonic and agonic lines.
c) The magnetic bearing of a line AB is $\mathrm{S} 28^{0} 30^{\prime} \mathrm{E}$. Find the true bearing if declination is $7^{0} 30^{\prime} \mathrm{W}$

3 a) Explain the different methods of orientation in plane table survey.
b) Define contour. Which are the different methods of locating contour?

PART B Answer any two full questions, each carries 15 marks.

4 a) Explain repetition method of measurement of horizontal angle.
b) Two triangulation stations A and B are 60 km apart and have elevation 240 m and 280 m respectively. Find minimum height of signal required at B so that line of sight may not pass near the ground than 2 m . The intervening ground has an elevation of 200 m .

5 a) Define mass diagram. What are its uses?
b) Explain the different steps in triangulation survey.

6 a) Explain prismoidal rule for calculating volume of a plot.
b) A railway embankment is 10 m wide with side slope $1.5(\mathrm{H}): 1(\mathrm{~V})$. Assuming the ground to be levelled in a direction transverse to centre line, calculate the
volume contained in a length of 120 m , the centre height at 20 m interval being in metres $2.2,3.7,3.8,4.0,3.8,2.8,2.5$ using trapezoidal and prismoidal formulae.

PART C
Answer any two full questions, each carries20 marks.
7 a) Explain the principle of least squares.
b) Explain the principle of EDM measurement.
c) The following are the mean values observed in the measurement of three angles
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ at one station, Calculate the most probable value.

$$
\begin{array}{ll}
\mathrm{A}=76^{0} 42^{\prime} 46.2^{\prime \prime} & \text { weight } 4 \\
\mathrm{~A}+\mathrm{B}=134^{0} 36^{\prime} 32.6^{\prime}, & \text { weight } 3 \\
\mathrm{~B}+\mathrm{C}=185^{\circ} 35^{\prime} 24.8^{\prime \prime} & \text { weight } 2 \\
\mathrm{~A}+\mathrm{B}+\mathrm{C}=262^{\circ} 18^{\prime} 10.4^{\prime \prime} & \text { weight } 1 . \tag{10}
\end{array}
$$

a) Define celestial horizon, hour angle, Zenith, Nadir, celestial equator.
b) Explain the operation of total station.

9 a) Explain different types of EDM instruments. Which are the different types of modulation of electromagnetic waves?
b) Form the normal equation for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in the following equation

$$
\begin{array}{cc}
3 x+3 y+z-4=0 & \text { weight } 2  \tag{10}\\
x+2 y+2 z-6=0 & \text { weight } 3 \\
5 x+y+4 z-21=0 & \text { weight } 1
\end{array}
$$

