Reg No.:___ Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC,AE)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. 1 a) Derive the expression for conductivity and mobility of carriers in a (7)

- semiconductor subjected to an electric field. b) Explain the temperature dependence of carrier concentration in extrinsic (3) semiconductors.
- c) Calculate the hole and intrinsic carrier concentrations. Sketch band (5) diagram. Nc= 10^{19} /cm³, Nv= $5x10^{18}$ /cm³, Eg=2eV, T=900K, n₀= 10^{17} /cm³.
- 2 a) Derive Einstein's relation.
 - b) Explain why indirect recombination is a slow process. (4)
 - c) A Si sample is doped with 10^{16} /cm³ In atoms and a certain number of shallow (5) donors. The In acceptor level is 0.16eV above E_V and E_f is 0.26eV above E_V at 300K.How many In atoms are un-ionised?
- 3 a) Derive the expression for electron, hole and intrinsic concentrations at (8) equilibrium in terms of effective density of states. Formulate the relation between these concentrations at equilibrium.
 - An n-type Si sample with $Nd = 10^{15}$ cm⁻³ is steadily illuminated such that gop = b) (7) 10^{21} EHP/cm³s. If T_n = T_p = lµs for this excitation, calculate the separation in the quasi-Fermi levels, (Fn - Fp).

PART B

Answer any two full questions, each carries 15 marks.

4 a) Derive ideal diode equation. State any two assumptions used.

- b) Draw the potential, charge density and electric field distribution within the (5) transition region of an abrupt pn junction with Nd<Na. Label the diagram.
- 5 a) Illustrate how a metal -n type contact behave as rectifying contact and ohmic (10)contact with supporting energy band diagram.
 - b) If a metal with a work function of 4.6 e V is deposited on Si (electron affinity of (5) 4 eV) and acceptor doping level of 10^{18} cm⁻³. Draw the equilibrium band diagram and mark off the Fermi level, the band edges, and the vacuum level. Is this a Schottky or ohmic contact, and why?
- 6 a) Illustrate the operation of a tunnel diode with supporting diagrams and explain (10)its VI characteristics

Marks

(6)

(10)

C192023

b) An abrupt Si p-n junction has $N_a = 10^{18} \text{cm}^{-3}$ on one side and $N_d = 5x \ 10^{15} \text{cm}^{-3}$ on (5) the other. If the junction has a circular cross section with a diameter of 10µm, Calculate Vo, x_{no} , Q_+ , and Eo for this junction at equilibrium (300 K).

PART C

Answer any two full questions, each carries20 marks.

- 7 a) Derive the expression for minority carrier distribution and terminal currents in a (12) BJT. State the assumptions used.
 - b) Explain the basic performance parameters α , $\beta \& \gamma$. (3)
 - c) Assume that a p-n-p transistor is doped such that the emitter doping is 10 times (5) that in the base, the minority carrier mobility in the emitter is one-half that in the base, and the base width is one-tenth the minority carrier diffusion length. The carrier lifetimes are equal. Calculate α and β for this transistor.
- 8 a) Derive the expression for drain current at linear region and saturation for a (10) MOSFET.
 - b) An Al-gate p-channel MOS transistor is made on an n-type Si substrate with $N_d = (5) 5 \times 10^{17} \text{ cm}^{-3}$. The SiO₂ thickness is 100 Å in the gate region, and the effective interface charge Q_i is 5 x 10^{10} q C/cm². Find W_m , V_{FB} , and V_T , if the gate to substrate work function difference $\Phi ms = -0.15V$
 - c) Draw and explain the transfer characteristics of an n-channel MOSFET. (5)
- 9 a) Explain the principle of operation of MOS capacitor with suitable energy band (10) diagram.
 - b) Explain base width modulation. Explain its effect on terminal currents. (5)
 - c) Draw and label the minority carrier distribution curve of a BJT in active mode. (5)
