APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

C1115

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC,AE)

Max. Marks: 100

Reg No.:_____

Duration: 3 Hours

PART A

Marks Answer any two full questions, each carries 15 marks.

Name:_____

- a) Explain Fermi Dirac distribution function. Plot the Fermi Dirac distribution (4) 1 function for an intrinsic semiconductor.
 - b) Explain diffusion. Derive an expression for diffusion current density for an n-type (7)semiconductor.
 - c) A Si sample is doped with 10^{17} As atoms/cm³. What is the equilibrium hole (4) concentration p_0 at 300K? Where is E_F relative to E_i ?
- 2 a) Draw the graph showing the distribution of excess carriers with respect to time in (3) an n-type semiconductor.
 - b) Derive the expressions for equilibrium concentration of electrons and holes using (6)Fermi Dirac distribution function.
 - c) A direct bandgap semiconductor $hasn_i = 10^{10} \text{ cm}^{-3}$ donors. Its low level carrier (6)lifetime τ is $\tau_n = \tau_p = 10^{-7}$ s.
 - i) If a sample of this material is uniformly exposed to a steady optical generation rate of $g_{op} = 2x10^{22}$ EHP/cm²-s; Calculate the excess carrier concentration $\Delta_n = \Delta_p$

Note : The excitation rate is not low level but assume that α_r is the same.

- ii) If the carrier lifetime (τ) is defined as the excess carrier concentration divided by the recombination rate, what is τ at this excitation level?
- 3 a) Explain High field effects.
 - b) Derive and explain Einstein relations.
 - c) A Ge sample is doped with 10¹⁷ Boron atoms/cm³.Determine the carrier (5) concentration & Fermi level position at room temperature.n_i for Ge = 2.5×10^{13} cm⁻³ at room temperature.

(4) (6)

C1115

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Draw and explain the VI characteristics of PN junction diode. (4)
 - b) Explain the different types of capacitances associated with a p-n junction. (6)
 - c) The following data are given for a Si abrupt pn junction at 300k, $A=1cm^2$, $V_0=(5)$ 0.6V.

P- side	N-side
$N_A = 10^{18} \text{cm}^{-3}$	$N_D = 10^{16} \text{cm}^{-3}$
$\tau_n = 50 \ \mu s$	$\tau_p = 10 \ \mu s$
$D_n = 34 \text{ cm}^2 / \text{ s}$	$D_p = 13 \text{ cm}^2 / \text{ s}$

Calculate $I_p(x_n = 0)$; $I_n(x_p = 0)$ & the total diode current ; (Given kT/q = 0.026 V)

5	a)	Derive the ideal diode equation.	(10)
	b)	Differentiate between Zener and Avalanche breakdown mechanisms.	(5)
6	a)	Derive an expression for the contact potential of an open circuit p-n junction.	(7)
	b)	Write short notes on metal semiconductor contacts.	(8)

PART C

Answer any two full questions, each carries20 marks.

7	a)	Explain the principle of operation of MOS capacitor with suitable energy band	(10)
		diagrams.	
	b)	Explain base width modulation with neat diagrams.	(4)
	c)	Briefly explain	(6)
		i) MOSFET scaling.	
		ii) Hot electron effect.	
8	a)	Derive the expression for minority carrier distribution and terminal currents of a	(14)
		pnp transistor.	
	b)	Explain the capacitance – voltage relation for a MOS capacitor with neat diagram.	(6)
9	a)	Explain the principle of operation of FINFET.	(7)
	b)	With neat diagrams, explain the flow of different current components in a pnp	(7)
		transistor under active mode of operation.	
	c)	Draw and explain the drain characteristics of an n-channel MOSFET.	(6)

С