\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: EC201

Course Name: NETWORK THEORY

PART A

Answer any two full questions, each carries 15 marks.
Marks
1 a) Find the voltage across 10Ω resistor using mesh analysis.

b) State and prove the following properties of Laplace transform i) Time Shifting ii) Frequency Shifting

2 a) Find current I using node analysis.

b) Determine the value of V_{2} such that the current through the impedance $(3+\mathrm{j} 4) \Omega$ is zero.

3 a) Determine the voltage across 10Ω, connected between the terminals A and B , using superposition theorem.

b) Using Thevenin's theorem, find the power dissipated across 24Ω resistor.

PART B

Answer any two full questions, each carries 15 marks.

4 a) Obtain the transient current and voltage responses of a RL circuit when subjected to a unit step input.
b) Solve the differential equation $\frac{d^{2} v(t)}{d t^{2}}+6 \frac{d v(t)}{d t}+8 v(t)=2 u(t)$ subject to the initial conditions $v(0)=1, v^{\prime}(0)=-2$.

5 a) For the given network function, draw the pole-zero plot and hence, obtain its time
domain response from the plot. $V(s)=\frac{5(s+5)}{(s+2)(s+7)}$
b) A dc voltage of 100 V is applied in the circuit shown in the figure and the switch, K is kept open. The switch is closed at $\mathrm{t}=0$. Find the resulting current.

6 a) Write down the necessary conditions for driving point functions.
b) For the network shown, find the following $\frac{I_{2}(s)}{I_{1}(s)}, \frac{V_{2}(s)}{V_{1}(s)}$ and $\frac{V_{1}(s)}{I_{1}(s)}$.

PART C

Answer any two full questions, each carries20 marks.

7 a) Show that the overall Y parameter, of two 2-port networks when connected in parallel, is the sum of individual Y parameters of the two networks.
b) Determine the transmission parameters of the two port network given below.

c) Define the terms (i) Characteristic impedance (ii) Propagation Constant

8 a) A series RLC circuit resonates at a frequency of 1500 Hz and consumes 75 W power for 50 V ac source at resonant frequency. The bandwidth is 0.75 kHz . Calculate R, L and C. Also calculate the maximum current and half power frequencies.
b) Obtain the open circuit Z parameters of the network shown in figure.

9 a) Derive the expressions for (i) maximum output voltage and (ii) maximum amplification factor for a single tuned circuit.
b) Find the drop across the capacitor.
