

1. (a) statement 2 marks, \quad Proof 3 marks
(b) $\tau=\mu(\mathrm{du} / \mathrm{dy})=1591.6 \mathrm{~N} / \mathrm{m}^{2} \quad \mathrm{~F}=\tau \times \mathrm{A}=180 \mathrm{NT}=\mathrm{F} \times \mathrm{D} / 2=36 \mathrm{Nm}$

$$
\text { Power lost }=\mathrm{T} \mathrm{x} \omega=\mathrm{T}(2 \pi \mathrm{~N} / 60)=716.283 \mathrm{~W} \quad 6 \text { marks }
$$

2. Derivation - Total pressure 5 mark

Derivation - Centre of pressure 5 mark
3. Classification of fluid flow 10 marks
4. (a) Velocity vector for 2 D is given by

$$
\mathrm{V}=\mathrm{ui}+\mathrm{vj}
$$

Case a :
The continuity equation for steady, 2D incompressible flow is given by $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

The continuity equation for steady incompressible flow is satisfied hence the flow is possible

5 mark
Case b:
The expression for rotation of a fluid particle in the $\mathrm{X}-\mathrm{Y}$ plane about Z axis is given by
$\mathrm{w}_{\mathrm{z}}=1 / 2\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$
$\mathrm{w}_{\mathrm{z}}=0$
hence the flow is irrotational.
5 mark

PART B

Answer any three full questions, each carries 10marks.

5. Hagen Poiseuille equation Derivation 10 mark
6. Bernoulli's equation 2 marks

$$
\mathrm{Q}=\mathrm{a}_{1} \mathrm{v}_{1}=\mathrm{a}_{2} \mathrm{v}_{2}=5400 \mathrm{~L} / \mathrm{min}=0.09 \mathrm{~m}^{3} / \mathrm{s}
$$

$\mathrm{V}_{1}=0.079 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{2}=0.319 \mathrm{~m} / \mathrm{s}$, Slope $=1$ in 100
$\tan \theta=1 / 100=0.01 \quad \theta=0.572^{\circ}$
$\mathrm{Z}_{1}=3 \mathrm{~m}, \mathrm{Z}_{2}=0$
$\mathrm{P}_{1} / \rho \mathrm{g}+\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{Z}_{1}=\mathrm{P}_{2} / \rho \mathrm{g}+\mathrm{V}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{Z}_{2}$
$\mathrm{P}_{2}=98.046 \mathrm{kPa}$
Pressure at the lower end.

$$
8 \text { mark }
$$

7. $\quad \operatorname{Vmax}=2 \mathrm{~m} / \mathrm{s}$ Average velocity, $\mathrm{V}=\mathrm{Vmax} / 2=1 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\rho \mathrm{V} d / \mu \quad$ Flow is Laminar
Pressure gradient in the direction of flow, $\Delta \mathrm{P} / \mathrm{L}=32 \mu \mathrm{~V} / \mathrm{d}^{2} \mathrm{~N} / \mathrm{m}^{2}$ per m length of pipe
shear stress at the pipe wall, $\tau=(\Delta \mathrm{P} / \mathrm{L}) \mathrm{r} / 2 \mathrm{~N} / \mathrm{m}^{2}$
velocity at a distance 30 mm from the wall $=(1 / 8 \mu)(\Delta \mathrm{P} / \mathrm{L}) \mathrm{r}^{2} \mathrm{~m} / \mathrm{s}$
Average velocity 2 marks
(i) the pressure gradient in the direction of flow (ii) shear stress at the pipe wall; (iii)

Reynold's number; and (iv) velocity at a distance 30 mm from the wall. ($4 \times 2=8$ marks),
8. Sketch of venturimeter 2 marks

Bernoulli's equation 2 marks
Rate of flow - Derivation 6 marks

PART C

Answer any four full questions, each carries 10marks.

9. boundary layer 2marks

Sketch 3 marks
Illustration 5 marks
10. Sketch -2 marks,

Boundary Layer Thickness
Laminar Boundary Layer
Turbulent boundary Layer
Laminar Sub Layer ($2 \times 4=8$ marks)
11. $\mathrm{Re}=\mathrm{VL} / \mathrm{v}=400000$, laminar 1 mark

Blassius relations 1 mark each ($1 \times 3=3$ marks)
(a) Boundary layer thickness at the end of the plate
$\delta=5 \mathrm{x} / \sqrt{ } R e=7.906 \times 10^{\wedge}-3 \mathrm{~m}$
(b) Shear stress at the middle of the plate
$\tau=0.332 \rho \mathrm{U}^{2} / \sqrt{\operatorname{Rex}}=0.0321 \mathrm{~N} / \mathrm{m}^{2}, \mathrm{x}=0.5 \mathrm{~m}$
(c) Total drag per unit length on the sides of the plate,
$\mathrm{C}_{\mathrm{D}}=1.328 / \sqrt{R e}=2.0997 \times 10^{\wedge}-3$
$F_{D}=\left(1 / 2 \rho A U^{2}\right) \times C_{D}=0.04535 \mathrm{~N}$
Answer (3 x $2=6$ marks)
12. Buckingham's π theorem 3 marks, Relation 7 marks
$\Delta \mathrm{P}=\mathrm{f}(\mathrm{D}, \mathrm{L}, \rho, \mu, \mathrm{V}, \mathrm{K})$
$\mathrm{n}=7, \mathrm{~m}=3, \mathrm{n}-\mathrm{m}=7-3=4$
$\mathrm{f}(\pi 1, \pi 2, \pi 3, \pi 4)=0$,
$\pi 1=\Delta \mathrm{P} / \rho \mathrm{V}^{2}, \pi 2=\frac{L}{D}, \pi 3=\mu / \rho V D, \pi 4=\mathrm{K} / \mathrm{D}$
13. Hydraulic similarities 3 types 3 marks

Explanations 7 marks
14. Model law- 3 marks
$\mathrm{Lp} / \mathrm{Lm}=40 / 2.5$
Froude's model law
$(\mathrm{Fe})_{\text {model }}=(\mathrm{Fe})_{\text {prototype }}$
$[\mathrm{V} / \sqrt{ }(g L)]_{\text {model }}=[\mathrm{V} / \sqrt{ }(g L)]_{\text {prototype, }}, \mathrm{L}_{\mathrm{p}} / \mathrm{L}_{\mathrm{m}}$
$\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{m}}=/ \sqrt{ }\left(\frac{\mathrm{Lp}}{\mathrm{Lm}}\right)$
velocity of prototype, $\mathrm{V}_{\mathrm{p}} \quad 3$ marks
$\rho_{\mathrm{p}} / \rho_{\mathrm{m}}=1025 / 1000$
$\mathrm{Fp} / \mathrm{Fm}=\left(\rho \mathrm{L}^{2} \mathrm{~V}^{2}\right)_{\text {prototype }} /\left(\rho \mathrm{L}^{2} \mathrm{~V}^{2}\right)_{\text {model }}$
Force required to drive the prototype , Force - 4 marks

