

Max. Marks: 100

Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, MAY2019

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Duration: 3 Hours

PART A						
		Answer any two full questions, each carries 15 marks.	Marks			
1	a)	(a) 2 marks (b) 2 marks	(4)			
	b)	specialty of Gray code-unit distance code (2 marks), practical application - for	(4)			
		encoding angular position of a shaft with minimal error due to alignment				
		mismatch (2 marks)				
	c)	Relationship between error detection ability (D), error correction ability (C) and	(7)			
		minimum distance (M) of a code C+D=M-1 (2 marks), Position of error C1C2C3				
		(3 marks), corrected code (2 mark)				
2	a)	Proper K-map (3 marks), Output Y=CD+AB'+BD+A'B'C (4 marks)	(7)			
	b)	Find the minimal sum of product of the following expression	(8)			
		ABCD+AB'C'D'+AB'C+AB –Conversion to standard form (2 marks), K-map (2				
		marks), correct expression (4)				
3	b)	Sign magnitude=10011001,1's complement=11100110, 2's	(5)			
		complement=11100111				
	b)	expressions for the output of a 1-bit magnitude comparator E=AB+A'B' (2 marks),	(10)			
		L=AB' (3 marks), S=A'B (3 marks), Diagram (2 marks)				
PART B						
Answer any two full questions, each carries 15 marks.						
4	a)	Differentiate between PLA and PAL with necessary diagrams	(7)			
	b)	propagation delay (2 marks), power dissipation (2 marks), Fan-out (2 marks),	(8)			
		comparison (2 marks)				
5	a)	Explanation of race-around condition (2 marks), with waveform (1 mark), solution	(5)			

		(2 marks)			
	b)	mod-6 synchronous counter using T-flip-flops-state diagram (2 marks), Excitation	(10)		
		table (2 marks), K-maps (3 marks), excitation input expressions and diagram (3			
		marks)			
6	a)	Diagram of TTL NAND gate with totem pole output (4 marks), the advantages	(7)		
		and disadvantages (3 marks)			
	b)	J K flip-flop using D flip-flops - Table (2 marks), K-map (2 marks), expression	(8)		
		D=Q _n K'+Q _n 'J (2 marks), Diagram (2 marks)			
		PART C			
Answer any two full questions, each carries20 marks.					
7	a)	serial input parallel output (4 bit) shift register (5 marks), ring counter (5 marks)	(10)		
	b)	block diagram of a finite state machine (2 marks), block diagram of Mealy	(10)		
		machine (2) & Moore machine (2), comparison table (4)			
8	a)	2 bit synchronous up/down counter-state diagram (2 marks), minimum state table	(10)		
		(2 marks), three k-maps and expression for excitation inputs (3), diagram (3)			
	b)	State reduction using implication chart	(10)		
9	a)	the state diagram-3 states (2 marks), the minimum state table (2), excitation table	(10)		
		(2), design using D flip-flop (2), Circuit (2)			
	b)	different classes of shift registers (5 marks), use of parallel LOAD/SHIFT in shift	(10)		
		registers (5 marks)			
