

		(2 marks)	
	b)	mod-6 synchronous counter using T-flip-flops-state diagram (2 marks), Excitation table (2 marks), K-maps (3 marks), excitation input expressions and diagram (3 marks)	(10)
6	a)	Diagram of TTL NAND gate with totem pole output (4 marks), the advantages and disadvantages (3 marks)	(7)
	b)	J K flip-flop using D flip-flops - Table (2 marks), K-map (2 marks), expression $\mathrm{D}=\mathrm{Q}_{\mathrm{n}} \mathrm{K}^{\prime}+\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{J}(2$ marks), Diagram (2 marks)	(8)
ART C			
Answer any two full questions, each carries20 marks.			
7	a)	serial input parallel output (4 bit) shift register (5 marks), ring counter (5 marks)	(10)
	b)	block diagram of a finite state machine (2 marks), block diagram of Mealy machine (2) \& Moore machine (2), comparison table (4)	(10)
8	a)	2 bit synchronous up/down counter-state diagram (2 marks), minimum state table (2 marks), three k-maps and expression for excitation inputs (3), diagram (3)	(10)
	b)	State reduction using implication chart	(10)
9	a)	the state diagram-3 states (2 marks), the minimum state table (2), excitation table (2), design using D flip-flop (2), Circuit (2)	(10)
	b)	different classes of shift registers (5 marks), use of parallel LOAD/SHIFT in shift registers (5 marks)	(10)
