Reg No.:		D.: Name:	
	Г	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019)
		Course Code: MA201	
		Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS	
M	ax. N	Marks: 100 Duration: 3	Hours
		PART A	Marka
1		Answer any two full questions, each carries 15 marks (2^2)	Marks
1	a)	Check whether the function $f(z) = \begin{cases} Re\left(\frac{z^2}{ z }\right), & z \neq 0\\ 0, & z = 0 \end{cases}$ is continuous at $z = 0$.	(7)
	b)	Show that if $f(z) = u(x, y) + iv(x, y)$ is analytic, then $u(x, y)$ and $v(x, y)$ satisfy Cauchy-Riemann equations.	(8)
2	a)	Determine the region in the w -plane into which the triangular region bounded by $x = 1$, $y = 1$ and $x + y = 1$ is mapped by $w = z^2$.	(7)
	b)	Find the linear fractional transformation that maps $(-2, 0, 2)$ onto $(\infty, \frac{1}{4}, \frac{3}{8})$. Under this transformation what is the image of the x – axis.	(8)
3	a)	Find the real part of an analytic function whose imaginary part is $v = e^{-x}(x \cos y + y \sin y)$. Also find the corresponding analytic function.	(7)
	b)	Prove that $w = \frac{z}{1-z}$ maps the upper half plane $y > 0$ into the upper half plane of w -plane. What is the image of $ z = 1$ under this mapping?	(8)
		PART B Answer any two full questions, each carries 15 marks	
4	a)	Use Cauchy's Integral formula to evaluate $\oint_C \frac{z^2+1}{z^2-1} dz$ counter clock wise around	(7)
	b)	(i) $ z - 1 = 1$ (ii) $ z + 1 = 1$ Find the Laurent's series of $\frac{1}{(z-1)(z-2)}$ in	(8)
5	a)	(i) $1 < z < 2$ (ii) $ z > 2$ (ii) $0 < z - 1 < 1$ Use Cauchy's Residue theorem to evaluate $\oint_C \left(\frac{Ze^{\pi Z}}{Z^4 - 16}\right) dz$, where <i>C</i> is the	(7)
	b)	ellipse $9x^2 + y^2 = 9$. Evaluate $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta}$ using contour integration.	(8)

6 a) Evaluate $\int (Re z) dz$ along the real axis from 0 to 1 and then along a straight line parallel to imaginary axis from 1 to 1 + 2i. (7)

C192001

b) Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx$$
 using contour integration. (8)
PART C
Answer any two full questions, each carries 20 marks
7 a) Solve the system of equations using Gauss Elimination method:
 $y + z - 2w = 0$, $2x - 3y - 3z + 6w = 2$, $4x + y + z - 2w = 4$ (8)
b) If the matrix $\begin{bmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{bmatrix}$ is of rank 2, find the values of *a*, *b*. (6)
c) Check whether the vectors [1, 2, 1], [2, 1, 4], [4, 5, 6], [1, 8, -3]
are linearly dependent in R^3 . (6)
8 a) Diagonalise the symmetric matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ (8)
b) If one eigen values of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is 5, find the other
eigen values without finding the characteristic equation. What are the eigen values of A^2 and A^{-1} . (6)
9 a) Find a matrix B which transform $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ in to the diagonal form. (10)
b) Find a basis and dimension for the row space, column space and null space for
the matrix $A = \begin{bmatrix} -2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{bmatrix}$ (10)
