\qquad
\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION(R\&S), DECEMBER 2019

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

a) Check whether the function $f(z)=\left\{\begin{array}{ll}\operatorname{Re}\left(\frac{z^{2}}{|z|}\right), & z \neq 0 \\ 0, & z=0\end{array}\right.$ is continuous at $z=0$.
b) Show that if $f(z)=u(x, y)+i v(x, y)$ is analytic, then $u(x, y)$ and $v(x, y)$ satisfy Cauchy- Riemann equations.
2 a) Determine the region in the w-plane into which the triangular region bounded by $x=1, y=1$ and $x+y=1$ is mapped by $w=z^{2}$.
b) Find the linear fractional transformation that maps $(-2,0,2)$ onto $\left(\infty, \frac{1}{4}, \frac{3}{8}\right)$. Under this transformation what is the image of the x-axis.

3 a) Find the real part of an analytic function whose imaginary part is $v=e^{-x}(x \cos y+y \sin y)$. Also find the corresponding analytic function.
b) Prove that $w=\frac{z}{1-z}$ maps the upper half plane $y>0$ into the upper half plane of w-plane. What is the image of $|z|=1$ under this mapping?

PART B
Answer any two full questions, each carries 15 marks
4 a) Use Cauchy's Integral formula to evaluate $\oint_{C} \frac{z^{2}+1}{z^{2}-1} d z$ counter clock wise around
(i) $|z-1|=1$
(ii) $|z+1|=1$
b) Find the Laurent's series of $\frac{1}{(z-1)(z-2)}$ in
(i) $1<|z|<2$
(ii) $|z|>2$
(ii) $0<|z-1|<1$

5 a) Use Cauchy's Residue theorem to evaluate $\oint_{C}\left(\frac{z e^{\pi z}}{z^{4}-16}\right) d z$, where C is the ellipse $9 x^{2}+y^{2}=9$.
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\sqrt{2}-\cos \theta}$ using contour integration.

6 a) Evaluate $\int(\operatorname{Re} z) d z$ along the real axis from 0 to 1 and then along a straight line parallel to imaginary axis from 1 to $1+2 i$.
b) Evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$ using contour integration.

PART C
 Answer any two full questions, each carries 20 marks

7 a) Solve the system of equations using Gauss Elimination method:

$$
\begin{equation*}
y+z-2 w=0, \quad 2 x-3 y-3 z+6 w=2, \quad 4 x+y+z-2 w=4 \tag{8}
\end{equation*}
$$

b) If the matrix $\left[\begin{array}{cccc}1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b\end{array}\right]$ is of rank $\mathbf{2}$, find the values of a, b.
c) Check whether the vectors $[1,2,1],[2,1,4],[4,5,6],[1,8,-3]$ are linearly dependent in R^{3}.

8 a)
Diagonalise the symmetric matrix $\left[\begin{array}{crc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
b) If one eigen values of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ is $\mathbf{5}$, find the other eigen values without finding the characteristic equation. What are the eigen values of A^{2} and A^{-1}.
c) Reduce the quadratic form $q=3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form. Examine the definiteness.

9 a) Find a matrix B which transform $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ in to the diagonal form.
b) Find a basis and dimension for the row space, column space and null space for the matrix $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2\end{array}\right]$

