

Scheme of Valuation/Answer Key (Scheme of evaluation (marks in brackets) and answers of problems/key)								
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018								
	Course Code: MA201							
Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS								
М	Max. Marks: 100 Du		tion: 3 Hours					
		PART A						
1	\	Answer any two full questions, each carries 15 marks	Marks					
I	a)	$u = sinxcoshy, v = cosxsinhy;$ find u_x, u_y, v_x, v_y	(2+2)					
		$u_x = v_y$, $u_y = -v_x$; $f'(z) = cosz$	(2+1)					
	b)	$x = \frac{u}{v}$ $v = \frac{-v}{v}$	(3)					
		$u^2 + v^2$ $u^2 + v^2$	(3)					
		$ z - 2i = 2 \implies x^2 + y^2 - 4y = 0$	(2)					
		\Rightarrow 1+4v = 0.						
2	a)	Finding OR	(2)					
		$v_x = \frac{2x}{x^2 + x^2} + 1$ and $v_y = \frac{2y}{x^2 + x^2} - 2$	(1+1)					
		$u = 2 \tan^{-1} \left(\frac{x}{-1} \right) - 2x - y (5)$	(1+1)					
		C-R equations, $f'(z) = u_x + iv_x$ (y)	(1)					
		f(z) = u + iv (2)	(1)					
		Put $x = z, y = 0$	(2)					
		finding $f(z) = 2i \log z = (2+i)z + C$						
		$jinaing j(2) = 2110g^2 (2+1)^2 + C$						
	b)	$u = x^2 - y^2$, $v = 2xy$; $x = 1 \Rightarrow v^2 = 4(1 - u)$;	(2+2)					
		$y = 1 \Rightarrow v^2 = 4(1+u);$ $x + y = 1 \Rightarrow u^2 = 1 - 2v;$ region.	(1+2+1)					
3	a)							
		$f(z) = \frac{zRe(z)}{ z } = \frac{(x+iy)x}{\sqrt{x^2+y^2}}$	(2)					
		Let $z \to 0$ along the path $y = mx$	(2)					
		$\lim \frac{f(z)-f(0)}{z} = \frac{1}{z}$, not unique. So limit does not exist	(2)					
		$z \to 0$ $z = \sqrt{1+m^2}$, not unique, so mint does not exist.	(1)					

		So $f(z)$ is not differentiable at $z = 0$					
	b)	Cross Ratio and Substitution	(4+4)				
	PART B						
	Answer any two full questions, each carries 15 marks						
4	a)	$z = 1$ lies inside C and $z = \pm 2i$ lie outside C; $f(z) = \frac{e^z}{2}$;	(2+2)				
		$\int_{c} \frac{e^{z}/(z^{2}+4)}{(z-1)} dz = 2\pi i \frac{d}{dz} \left(\frac{e^{z}}{z^{2}+4} \right); \qquad \frac{6e\pi i}{25}$	(2+1)				
	b)	$(\bar{z})^2 = (x^2 - y^2) - i2xy$	(1)				
		i)Along the real axis, integral $=\frac{B}{3}$,					
		along the vertical line, integral = $2 + \frac{11}{3}i$	(2)				
		Answer: $\frac{14+11i}{2}$	(1)				
		ii) $2y = x$ implies $2dy = dx$ Answer : $\frac{10-5i}{3}$	(1+3)				
5	a)	(a) $f(z) = \frac{z}{31} - \frac{z^3}{51} \dots$; $z = 0$ is a removable singularity.	(2+1)				
		(b) Poles $z = (2n+1)\frac{\pi}{2}$, $n = 0, \pm 1, \pm 2,$ Res = -1.	(3+1)				
	b)	$C: z = 1, \ z = e^{i\theta}, \ 0 \le \theta \le 2\pi, \ \sin\theta = \frac{z - z^{-1}}{2i} = \frac{z^2 - 1}{2i\pi}, \ d\theta = \frac{dz}{dz}$	(2)				
		$\int_{0}^{2\pi} \frac{1}{5 - 3\sin\theta} d\theta = 2 \int \frac{1}{-3z^2 + 10iz + 3} dz$	(2)				
		Poles are $z = 3i, \frac{i}{3}$; $z = 3i$ lies outside C and $z = \frac{i}{3}$ lies inside C.	(1)				
		$Resf\left(z=\frac{i}{3}\right)=\frac{1}{8i}; \int \frac{1}{-3z^2+10iz+3}dz=\frac{\pi}{4}; \text{ ans } \frac{\pi}{2}$	(1+1+1)				
6	a)	$z = e^{i\theta}, 0 \le \theta \le 2\pi, dz = ie^{i\theta} d\theta$	(3)				
		$f(z) = \log z = i\theta$	(1)				
		$\int_{C} \log z dz = -\int_{0}^{2\pi} \theta e^{i\theta} d\theta = 2\pi i$	(2+1)				
	b)	The curve C consisting of the real axis from $-R$ to R and the upper	(2)				
		semicircle C_{R} : $ z = R$.					
		As $R \to \infty$, $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx = \int_{C} \frac{z^2}{(z^2+1)(z^2+4)} dz = \int_{C} f(z) dz$	(1)				
			(1)				

		Poles are $z = \pm i, \pm 2i$	
		z = i, 2i are the poles of order 1 lying inside C.	(1)
			(2)
		Res $f(z=i) = \frac{i}{6}$, Res $f(z=2i) = \frac{i}{3}$	(1)
		By Cauchy's Residue Theorem, $\int_{C} f(z)dz = 2\pi i (\frac{i}{6} - \frac{i}{3}) = \frac{\pi}{3}$	
		PART C	
		Answer any two full questions, each carries 20 marks	
7	a)	$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -3 \\ 0 & 3 & 2 & 3 \\ 0 & -15 & -10 & -15 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \text{ Rank = 2.}$	(4+3+1)
	b)	$\begin{bmatrix} A:B \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 1 & 3 & 5 & 9 \\ 2 & 5 & a & b \end{bmatrix}; Reducing to Echelon form$	(1+2)
		(i) $a = 8, b \neq 15$ (ii) $a \neq 8, b$ any real number (iii) $a = 8, b = 15$	(2+1+1)
	c)	Reducing $\begin{bmatrix} 3 & 4 & 0 & 1 \\ 2 & -1 & 3 & 5 \\ 1 & 6 & -8 & -2 \end{bmatrix}$ to row echelon form.	(2)
		Rank = 3 = maximum number of linearly independent vectors	(2)
		Given vectors are linearly independent.	(1)
8	a)	Reduce the Augmented matrix into Echelon form. $x = 2, y = 1, z = -4$	(5+3)
	b)	$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} \qquad \lambda^3 - 6\lambda^2 + 8\lambda + 2 = 0$	(3+3)
	c)	Eigen values = 4,1,7; eigen vectors [-1 2 2],[2 -1 2],[2 2 -1]	(3+3)
9	a)	Characteristic equation $\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$;	(2)
		$\lambda = 1, 1, 4$	(2)
		$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$	(4)
	b)	Definition of symmetric and skew symmetric matrix;	
		$A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$	(3+3)
		Proving $A + A^T$ is symmetric and $A - A^T$ is skew symmetric.	

