

PART C			
Answer all questions, each carries3 marks.			
8		Algorithm	(3)
9		Disadvantages- Queue full condition does not necessarily mean that the queue is full-1 mark Overcome - After each Enqueue operation, shift the elements towards front (or) Treat the queue as circular	(3)
10		Definition of Tree -1.5 marks; Definition of Binary Tree - 1.5 marks	(3)
11		Diagram	(3)
PART D			
Answer any two full questions, each carries9 marks.			
12	a)	- BST definition 1 mark - Example 2 marks	(3)
	b)	Algorithm for Push - 3 marks; Algorithm for Pop - 3 marks;	(6)
13		Algorithm - 5 marks Trace on the given input -4 marks	(9)
14	a)	Algorithm	(4)
	b)	Iterative/Non Recursive algorithm for Inorder Traversal of a Binary Tree	(5)
PART E			
Answer any four full questions, each carries10 marks.			
15	a)	(i) Adjacency Matrix with advantages and disadvantages - 3 marks (ii) Adjacency List with advantages and disadvantages -3 marks	(6)
	b)	Algorithm	(4)
16	a)	Algorithm for DFS - 3 marks; Algorithm for BFS - 3 marks	(6)
	b)	Output of DFS traversal - 2 marks; Output of BFS traversal - 2 marks;	(4)
17	a)	Algorithm for Quick Sort	(5)
	b)	Trace the working showing the partitioned array after each call.	(5)
18	a)	Comparison listing atleast 3 differences	(3)
	b)	Algorithm -4 marks	

		Trace the algorithm on given input (show the values of beg, end and mid after each iteration)	(7)
19	a)	Collision - 1 mark; Example - 1 mark	(2)
	b)	Division Method with an example -2 marks Midsquare Method with an example -2 marks Folding Method with an example -2 marks Digit Analysis Method with an example -2 marks	(8)
20		$\begin{array}{\|ll} \hline \mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 7 \\ 2341 \bmod 7=3 \\ 4234 \bmod 7=6 \\ 2839 \bmod 7=4 \\ 430 \bmod 7=3 \\ 22 \bmod 7=1 \\ 397 \bmod 7=5 & \\ 3920 \bmod 7=0 & \\ \begin{array}{l} \text { (i) Separate Chaining } \end{array} & -2 \text { marks } \\ 0 \text { [3920] } 1 \text { [22] } 2 \text { [] } 3 \text { [2341, 430] } 4 \text { [2839] } 5 \text { [397] } 6 \text { [4234] } & -2 \text { marks } \\ \text { (ii) Linear probing } & \\ 0 \text { [397] } 1 \text { [22] } 2 \text { [3920] } 3 \text { [2341] } 4 \text { [2839] } 5 \text { [430] } 6 \text { [4234] } & -2 \text { marks } \\ \text { (iii) quadriatic probing } & \\ 0 \text { [430] } 1 \text { [22] } 2 \text { [3920] } 3 \text { [2341] } 4 \text { [2839] 5[397] } 6 \text { [4234] } & -4 \text { marks } \end{array}$ 430 collides at 3: $\begin{aligned} & 3+1^{2}=4 \\ & 3+2^{2}=3+4=7 \% 7=0 \end{aligned}$ 3920 collides at 0 : $\begin{aligned} & 0+1^{2}=1 \\ & 0+2^{2}=0+4=4 \\ & 0+3^{2}=0+9=9 \% 7=2 \end{aligned}$ (students are supposed to show the output by drawing the hash table)	(10)
