(S	chen	Scheme ne of evaluation (marks in brackets) and answers of problems/ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MA	/key) Y	
		Course Code: CS205		
		Course Name: DATA STRUCTURES (CS,IT)		
Ma	ıx. M	arks: 100	Duration: 3	Hours
		PART A		N 4a sel se
1		Answer all questions, each carries3 marks. Each definition – 1 mark each (3 * 1 =3)		Marks (3)
2		Comparison – pointing out atleast 3 differences		(3)
				(3)
3		Row major order representation – 1.5 marks		
		Column major order representation – 1.5 marks		(3)
4		Algorithm		(3)
		PART B		
_		Answer any two full questions, each carries9 marks.		[
5	a)	Definition Essential properties – must have a base case which can be solve recursion recursive call should progress towards base case		
			– 3 marks	(4)
	b)	Recursive function	- 4 marks	
		Time Complexity $-O(n)$	- 1 mark	(5)
6		Time Complexity – O(n)(i) Algorithm to insert a node with data 'y' after a node whose data is		(5) (3)
6	,			
6	,	(i) Algorithm to insert a node with data 'y' after a node whose data is		(3)
6	a)	(i) Algorithm to insert a node with data 'y' after a node whose data is(ii) Algorithm to delete a node whose data is 's'.		(3) (3)

		PART C	
8		Answer all questions, each carries3 marks. Algorithm	(3)
9		Disadvantages-	
		Queue full condition does not necessarily mean that the queue is full – 1 mark Overcome – After each Enqueue operation, shift the elements towards front (or) Treat the queue as circular – 2 marks	(2)
10		Definition of Tree – 1.5 marks ; Definition of Binary Tree – 1.5 marks	(3) (3)
-			
11		Diagram	(3)
		PART D Answer any two full questions, each carries9 marks.	
12	a)	 BST definition 1 mark Example 2 marks 	(3)
	b)	Algorithm for Push – 3 marks; Algorithm for Pop – 3 marks;	(6)
13		Algorithm – 5 marks Trace on the given input – 4 marks	(9)
14	a)	Algorithm	(4)
	b)	Iterative/Non Recursive algorithm for Inorder Traversal of a Binary Tree	(1)
		PART E	
		Answer any four full questions, each carries10 marks.	
15	a)	(i) Adjacency Matrix with advantages and disadvantages – 3 marks	
		(ii) Adjacency List with advantages and disadvantages - 3 marks	(6)
	b)	Algorithm	(4)
16	a)	Algorithm for DFS – 3 marks; Algorithm for BFS – 3 marks	(6)
	b)	Output of DFS traversal – 2 marks; Output of BFS traversal – 2 marks;	(4)
17	a)	Algorithm for Quick Sort	(5)
	b)	Trace the working showing the partitioned array after each call.	(5)
18	a)	Comparison listing atleast 3 differences	(3)
	b)	Algorithm - 4 marks	

		Trace the algorithm on given input (show the values of beg, end and mid afte	r
		each iteration) - 3 marks	(7)
19	a)	Collision – 1 mark; Example – 1 mark	(2)
	b)	Division Method with an example – 2marks	
		Midsquare Method with an example – 2marks	
		Folding Method with an example – 2marks	
		Digit Analysis Method with an example – 2marks	(8)
20		$h(x) = x \mod 7$	
		$2341 \mod 7 = 3$	
		4234 mod 7 = 6	
		$2839 \mod 7 = 4$	
		$430 \mod 7 = 3$	
		$22 \mod 7 = 1$	
		$397 \mod 7 = 5$	
		3920 mod 7 = 0 - 2 marks	
		(i) Separate Chaining	
		0 [3920] 1 [22] 2 [] 3 [2341, 430] 4 [2839] 5 [397] 6 [4234] - 2 marks	
		(ii) Linear probing	
		0 [397] 1 [22] 2 [3920] 3 [2341] 4 [2839] 5 [430] 6 [4234] - 2 marks	
		(iii) quadriatic probing	
		0 [430] 1 [22] 2 [3920] 3 [2341] 4 [2839] 5 [397] 6 [4234] - 4 marks	
		430 collides at 3:	
		$3+1^2 = 4$	
		$3+2^2 = 3+4 = 7 \% 7 = 0$	
		3920 collides at 0:	
		$0+1^2 = 1$	
		$0+2^2 = 0+4 = 4$	
		$0+3^2 = 0+9 = 9\% 7 = 2$	
		(students are supposed to show the output by drawing the hash table)	(10)
