Reg No.:_		: Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
THIRD SEMESTER B. TECH DEGREE EXAMINATION(S), MA		THIRD SEMESTER B. TECH DEGREE EXAMINATION(S), MAY 2019	
		Course Code: EE203	
		Course Name: ANALOG ELECTRONIC CIRCUITS	
Max	. M	arks: 100 Duration: 3	3 Hours
		PART A	
		Answer all questions, each carries5 marks.	Marks
1		Design a clamper circuit using diode to obtain sine wave output with its negative peak clamped to $+2.6V$. (Assume diode drop as $0.6V$).	(5)
2		Why does the gain of a transistor amplifier vary with frequency? Sketch the frequency response of CE amplifier.	(5)
3		Why negative feedback is utilised in amplifiers? How various parameters of an amplifier gets modified by negative feedback?	(5)
4		The gain bandwidth product of an op-amp is given as 10MHz.Determine the bandwidth of a non inverting amplifier using op amp for a gain of 60dB.Also find the closed loop gain of the amplifier if the required bandwidth is 100kHz.	(5)
5		Draw the circuit diagram of an ideal differentiator using op-amp with corresponding input and output waveform. Why the circuit can not be recommended for practical use?	(5)
6		Design a comparator using Op Amp that compares a sinusoidal signal of 3V peak with a fixed dc voltage of 1.5V.Draw corresponding waveforms.	(5)
7		Design a Wein bridge oscillator with frequency of oscillation of 1kHz using op- amp.	(5)
8		Draw a monostable multivibrator circuit for a time period of 1msec with an amplitude of 10V using 555 timer.	(5)
		PART B	
		Answer any twofull questions, each carries10 marks.	
9	a)	Explain the construction and operation of Enhancement type MOSFET with neat diagrams.	(5)
	b)	Design a zener voltage regulator to provide regulated output voltage of 5.6 V for a variable load resistance that varies from 300Ω to $6k\Omega$. Zener diode parameters are I_{Zmin} = 0.25 mA and P_Z = 280mW .The input voltage is considered as constant at 15V.	(5)
10	a)	The data sheet of N channel IEET gives the following details Ipss=10mA and	(5)

- The data sheet of N channel JFET gives the following details. $I_{DSS}=10$ mA and 10 a) $(\mathbf{5})$ pinch off voltage of -4.8V.Determine (i) V_{GS} corresponding to drain current of 3.5 mA. (ii)Determine transconductance g_m at this drain current.
 - b) Draw the small signal AC equivalent circuit of a Common Drain FET (5) amplifier. Derive the expression for voltage gain, input impedance and output impedance.
- 11 a) Determine the following parameters for the fixed bias configuration of (4) transistor amplifier. (i) I_B and I_C (ii) V_{CE} and (iii) V_B and V_C . Assume V_{BE} =0.7V.

Given β =100,V_{cc}=16V,R_c=2.2k Ω and R_B=240 k Ω .

b) Design a voltage divider bias circuit to obtain the following specifications and (6) determine the stability factor. Assume the ratio of base current to the current through R_{B2} is 1:10. Given V_{CC} =22V, β =100, V_{CE} =50% of V_{CC} , V_{RE} =10% of V_{CC} , I_C =0.8mA and V_{BE} =0.7V.

PART C

Answer any two full questions, each carries10 marks.

- 12 a) Specify different schemes of coupling in multistage amplifiers. Compare their (5) merits and demerits
 - b) Why class AB power amplifiers are preferred over Class B operations? (5)
- 13 a) Derive the expression for frequency of oscillation for RC phase shift oscillator (5) using BJT.
 - b) The datasheet of Op Amp gives the following values. (5)
 Open loop Gain= 175,000, common-mode gain =0.18 and slew rate= 0.5V/µs. Determine the CMRR in decibels. How long does it take the output voltage of an op-amp to go from -10V to +10V?
- 14 a) Derive the expression for output power and conversion efficiency of class B (5) push pull power amplifier.
 - b) How do the open-loop voltage gain and closed-loop voltage gain of an op-amp (5) differ? What is the limiting value of output voltage of Op Amp Circuit? Justify with proper characteristics.

PART D

Answer any twofull questions, each carries 10 marks.

- 15 a) Design an Op Amp circuit to get the output according to the given expression. (5) $V_0 = -[0.3V_1 + 3V_2 + V_3]$ where V_1, V_2 and V_3 are the inputs to op-amp.
 - b) Analyze the circuit diagram of an Instrumentation amplifier using op-amp. (5) Derive the expression for output voltage.
- 16 a) Draw and explain the operation of a triangular wave generator using op-amp. (5)
 - b) Design an astable multi vibrator using 555 timer for an output wave of 60% (5) duty ratio at 2kHz frequency.
- 17 a) Draw the circuit diagram of a Precision rectifier using op-amp. What is the (5) main advantage over a normal rectifier?
 - b) Design an RC phase shift oscillator using op-amp for an output frequency of (5) 1kHz
