## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key
FIRST/SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Max. Marks: 100

## PART A

Answer all questions, each carries 2 marks.
Duration: 3 Hours
Max. Mars:

# Course Code: PH100 <br> Course Name: ENGINEERING PHYSICS 

1 Frequency decreases--- 1 mark, Time period increases -1 mark2 Transverse waves -1 mark, Longitudinal waves -1 mark - Two points for each3 Coherent sources- Constant phase relationship between waves - 1 markSame frequency and same wavelength -1 mark4Grating element-1 mark; grating equation in terms of grating element- 1 mark

Anti symmetric wave function for fermions - 1 mark
9 Any two Differences between echo and reverberation -1 mark for each.
Magnetostriction effect -1.5 marks, Write one application -0.5 mark
Mention any 4 advantages of semiconductor laser - 2 marks

## PART B <br> Answer any 10 questions, each carries 4 marks.

What is Resonance -1 mark, expression for amplitude -1 mark, derivation of resonant frequency- 2 marks
141 mark for each value, (Ans:- $\mathrm{A}=3 \times 10^{-3} \mathrm{~V} / \mathrm{m}, \mathrm{f}=1.33 \times 10^{13} \mathrm{~Hz}$, $\left.\lambda=2.24 \times 10^{-5} \mathrm{~m}, \mathrm{v}=2.9 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
If $\mathbf{k}$ and $\boldsymbol{\omega}$ are identified but $\mathbf{f}$ and $\boldsymbol{\lambda}$ are not calculated $-1 / 2$ mark for each
Construction and working - 3 marks, figure- 1 mark .
Distance between central maximum and first minimum $x=f \lambda / a-1$ mark;
Correct substitution - 2 marks
Answer with proper unit- 1 mark. (Answer: $\lambda=5000 \mathrm{~A}^{\circ}$ )
17 Equations for thickness of QWP \& HWP -1 mark each, Proof- 2 marks
Proper explanation of Superconductivity-2 marks,
Definition for transition temperature-1 mark, critical mag.field-1mark,
Formula-: $\lambda=\mathrm{h} / \sqrt{ }(2 \mathrm{mE})-1$ mark, Substitution -2 marks $\left[\mathrm{E}=100 \times 1.6 \times 10^{-19} \mathrm{~J}\right]$ :
Answer with unit $\left(\lambda=1.22 \times 10^{-10} \mathrm{~m}\right)-1$ mark

Explanation of Fermi level- 2 marks, Significance- 2 marks
Eqn. $T=0.163 \mathrm{~V} / \mathrm{A}-1 \mathrm{mark}(\mathrm{A}=\Sigma \mathrm{Sx} \boldsymbol{\alpha})$, finding $\Sigma \mathrm{S}=1720 \mathrm{~m}^{2}---1$ mark,
substitution-1 mark, Ans. $\boldsymbol{\alpha}=\mathbf{0 . 0 9 4 7} \mathrm{OWUm}^{-2}$ or sabine $\mathrm{m}^{-2}-1$ mark
. Equation - 1 mark [ $\mathrm{f}=1 /(2 \pi \sqrt{ } \mathrm{LC})$ ], Substitution \& calculation -2 marks
Answer with unit -1 mark [ 0.025 pF ]
Two points for each - 4 marks
Block diagram - 2 marks, Brief explanation of each part - 2 marks
PART C
Answer any three questions, each carries 6 marks.
Differential equation- 1mark; Derivation of general solution-2marks
Time- displacement curve with conditions for 3 cases --3 marks.
Figure and explanation -2 marks, derivation of expression for $\boldsymbol{\beta}-2$ marks, expression for $\mathbf{t}-1$ mark, experiment to find thickness -1 mark
Describe production of elliptically polarized light(Production of plane polarised
light,Use of QWP,Angle $\neq 45^{\circ}$ ) -4marks, Detection(Nicol prism \& QWP)- 2marks
Figure with explanation -1 mark,1-DSchrodinger equation for the particle-1 mark
$\mathrm{k}^{2}=2 \mathrm{mE} / \hbar^{2}-1 / 2 \mathrm{mark}$
General solution $\psi=A \sin k x+B \cos k x-1$ mark (or $A e^{i k x}+B e^{-i k x}$ )
Applying boundary conditions and obtaining $\psi=A \sin k L--1$ mark
Equation $k L=n \pi$ or $\mathrm{k}^{2}=n^{2} \pi^{2} / L^{2}--1 / 2$ mark
Equating the two values of $\mathrm{k}^{2}$ and obtaining Equation $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}--1$ mark
PART D
Answer any three questions, each carries 6 marks.
Definition for intensity of sound- 2 marks, expression- 1 mark.
Definition for threshold of hearing intensity and its value-1.5marks
Definition for threshold of pain intensity and its value-1.5marks
Inverse piezoelectric effect - 2 marks, Circuit diagram - 1mark
working with two equations for frequency - 3 marks
Figure- 1 mark, construction(explanation of basic components ) - 2 marks,
energy level diagram-1 mark, working(proper explanation of transitions)- 2 marks
Explanation of principle(TIR with conditions) -2 marks,
Step index fibre -1 mark, Graded index fibre - 1mark, Two advantages - 2 marks.

