

		horizontal distance from A to resultant $=3.99 \mathrm{~m}$ Shown in figure	(1) (1)	
10		Co ordinates of $\mathrm{A}(0,0,-4), \mathrm{B}(0,2,0) \mathrm{C}(0,0,4) \mathrm{O}(3,0,0)$ Unit vector in the direction of OA,OB,OC Force vectors in the direction of $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ Force along $\mathrm{OA}=12.5 \mathrm{KN}(\mathrm{C})$ along $\mathrm{OB}=18.03 \mathrm{kN}(\mathrm{T})$ along $\mathrm{OC}=12.5 \mathrm{kN}(\mathrm{C})$	(1) (3) (3) (1) (1) (1)	(10)
11	a)	Equations of Equilibrium $\mathrm{R}_{\mathrm{B}}=153.75 \mathrm{~N} ; \mathrm{R}_{\mathrm{A}}=161.25 \mathrm{~N}$	$\begin{gathered} (2) \\ (2) \end{gathered}$	(4)
	b)	Definition(1) characteristics (3) Resolution (2)		(6)
SET II (ANSWER ANY 2 QUESTIONS : $2 \times 10=20$ MARKS				
12		Sketch with forces acting --- Equations $\sum \mathrm{H}, \sum \mathrm{V}(1$ each $)$ and $\sum \mathrm{M}(2)$ Reaction between wall and ladder $=501 \mathrm{~N}$ Reaction between floor and ladder $=955 \mathrm{~N}$ Least force .. $=167 \mathrm{~N}$	(2) (4) (1) (1) (2)	(10)
13	a)	Principal axes and principal moment of inertia		(4)
	b)	Centroid from bottom and left end $(\mathrm{X}, \mathrm{Y})=(2.91,5.09) \mathrm{cms}$ $\mathrm{I}_{\mathrm{GXX}}=273.23 \mathrm{~cm}^{4} \ldots \ldots$	(3) (3)	(6)
14	a)	$\begin{aligned} & \text { Product of inertia of rectangle }=12.96 \times 10^{6} \mathrm{~mm}^{4} \\ & \text { Product of inertia of triangle }=10.8 \times 10^{6} \mathrm{~mm}^{4} \\ & \text { Product of inertia of trapezium }=23.76 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	(2) (2) (1)	(5)
	b)	Sketch showing the virtual work concept - Equations Reactions at the left support $=6.83 \mathrm{kN}$ Reaction at right support $=6.16 \mathrm{kN}$	$\begin{aligned} & \hline(2) \\ & (2) \\ & (0.5) \\ & (0.5) \end{aligned}$	(5)
$\text { SET } 111$ (ANSWER ANY 2 QUESTIONS : $\mathbf{2}$ X 10 = 20 MARKS				

