APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 Scheme for Valuation/Answer Key
 Scheme of evaluation (marks in brackets) and answers of problems/key
 SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018
 Course Code: CE403
 Course Name: STRUCTURL ANALYSIS - III

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any two full questions, each carries 15 marks.

1 a) Two assumptions 2 mark
Marks
b) Centroidal axis-2

Axial force-2
Beam shear-2
Beam moment-2
Column moment-2
Column shear - 2
Bending moment diagram-1
2 a) Kinematic indeterminacy of pin-jointed frames - $2^{1 / 2}$ marks
Kinematic indeterminacy of rigid-jointed frames - $21 / 2$ marks
b) Definition of stiffness and flexibility -3 marks

Inverse relation - 2 marks
c) Any 5 points - 1 mark each

3 a) Stiffness influence coefficients - 3 marks
Examples - 2 marks
b) Steps in displacement method of analysis - 7 marks
c) Equilibrium - $11 / 2$ marks

Compatibility - $11 / 2$ marks
PART B
Answer any two full questions, each carries 15 marks.
4 a) Flexibilty matrix for any member in rigid jointed frames and pin jointed frames
For rigid jointed plane frames $[\delta]_{\mathrm{AB}}=\frac{L}{6 E I}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
in case of pin jointed frames flexibility matrix $[\delta]_{\mathrm{AB}}=\left[\frac{L}{A E}\right]_{A B}$

Formation of flexibility matrix [δ^{*}]for entire unassembled structure with element flexibility matrices along diagonal (3)

Form flexibility matrix with respect to system coordinates using $[\mathrm{f}]^{\mathrm{T}}\left[\delta^{*}\right][\mathrm{f}]=$ [δ] (2)
b) Removal of redundant forces to form basic determinate structure (1)

Calculating displacement at each redundant location, due to applied loads (1)
Determination of displacement at redundant locations due to redundant (1)
Writing compatibility equation and solving for unknown forces I(2)
5 a) Formulation of displacement transformation matrix 3 marks
Final answer 2 marks
b) DKI 1 mark

FEM 2 mark
EJL 1 mark
Displacement transformation matrix 3 mark
K 1 mark
Last answer 2 mark
6 a) Full explanation with neat figure 5 mark
b) Displacement transformation matrix 4 mark

K 4 mark
Final answer 2 mark
PART C
Answer any two full questions, each carries 20 marks.
7 a) Stiffness coefficients Kij and Element stiffness matrix $\mathrm{K}_{\mathrm{e}}-2$
Formation of Global stiffness matrix $\mathrm{K}_{\mathrm{G}} \quad-3$
b) Writing global stiffness matrix in element coordinate system $-3 \times 2=6$

Assembly of global stiffness matrix 3

Modification of KG by applying BCs 2
Equivalent joint loads 2
Calculation of Δ using $\mathrm{P}=$ KG. $\Delta \quad 1$
Member forces 1

8 a) Explanation with figure and rotation matrix (5)
b) Writing global stiffness matrix in element coordinate system $-3 \times 2=6$

Assembly of global stiffness matrix 3
Modification of KG by applying BCs 2

Equivalent joint loads 2
Calculation of Δ using $\mathrm{P}=\mathrm{KG} . \Delta \quad 1$
Member forces 1

9 a) Explanation with definition
Figure
Derivation
Total
b) Derivation of equation

Substitution of the given data for the equation
1.5 marks
1.5 marks

2 marks
5 marks
9 marks
6 marks

Equal credits shall be given for students choosing 0.15 value as damping ratio and damping coefficient.

