APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Scheme for Valuation/Answer Key
 Scheme of evaluation (marks in brackets) and answers of problems/key
 SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018
 Course Code: EC465
 Course Name: MEMS

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any two full questions, each carries 15 marks.
 Marks

1 a) Linear and rotary motors: expln. (3 marks x 2), figures (2 marks x 2)
b) Explanation - 3 marks, Figure 2 marks

2 a) Give one application of MEMS in automobiles (2 marks). Figure (3marks)
b) Explanation of 3 three relevant points (2.5 marks x $3=7.5$ marks), figures 2.5 marks
a) Two types of sensing schemes used in inertial sensors and micro accelerometer. (Explanation with figures 5×2)
b) Explanation (5 marks)

PART B
Answer any two full questions, each carries 15 marks.
a) Derivation the Trimmer Force Scaling Vector (8 marks) Explanation of information provided by force scaling vector (2 marks)
b) Two relevant advantages of use of polymers in micro systems (3 marks) Give two examples of Polymers (full chemical/commercial names) - 1 marks each
a) Why electrostatic actuation is preferred over electromagnetic actuation in micro motors - explanation (5 marks)
b) Explain the Langmuir- Blodgett process with relevant figures. What are the advantages of LB films? - explanation (5 marks), figures - 4 marks, advantages 1 marks
a) single crystal Silicon production - explanation (3 marks), figures -2 marks
b) (1) To find the dose: $\mathrm{Rp}=307 \mathrm{~nm}=307 \times 10^{-7} \mathrm{~cm}$ and $\Delta \mathrm{Rp}=69 \times 10^{-7} \mathrm{~cm}$ at 100

KeVenergy level.
Since we have the maximum concentration, $\mathrm{Nmax}=30 \times 10^{18} / \mathrm{cm}^{3}$ at $\mathrm{x}=\mathrm{Rp}$

$$
N_{\max }=\frac{Q}{\sqrt{2 \pi} \Delta R_{p}}
$$

from which, we have the dose:

$$
Q=(2 \pi)^{0.5}\left(\Delta R_{p}\right) N_{\max }=(6.28)^{0.5}\left(69 \times 10^{-7} \mathrm{~cm}\right)\left(30 \times 10^{18} \mathrm{~cm}^{-3}\right)=5.2 \times 10^{14} / \mathrm{cm}^{2}
$$

(a) To find the dose: $\mathrm{Rp}=307 \mathrm{~nm}=307 \times 10^{-7} \mathrm{~cm}$ and $\Delta \mathrm{Rp}=69 \times 10^{-7} \mathrm{~cm}$ at 100 KeVenergy level.
Since we have the maximum concentration, $\mathrm{Nmax}=30 \times 10^{18} / \mathrm{cm}^{3}$ at $\mathrm{x}=\mathrm{Rp}$

$$
N_{\max }=\frac{Q}{\sqrt{2 \pi} \Delta R_{p}}
$$

from which, we have the dose:
$Q=(2 \pi)^{0.5}\left(\Delta R_{p}\right) N_{\max }=(6.28)^{0.5}\left(69 \times 10^{-7} \mathrm{~cm}\right)\left(30 \times 10^{18} \mathrm{~cm}^{-3}\right)=5.2 \times 10^{14} / \mathrm{cm}$
(b) $\mathrm{N}(0.15 \mathrm{um})=\mathrm{N}_{\operatorname{Hax}^{2}} * e^{\binom{(x-R p)^{2}}{2 \Delta R \nu^{2}}}=30 \times 10^{18} \mathrm{~cm}^{-3} * e^{-\left(\frac{(0.15-0.367)^{2}}{2 * 0.060^{2}}\right)}$

$$
=2.27 \times 10^{18} \mathrm{~cm}^{-3}
$$

$$
e^{-\left(\frac{(x-0.3 a 7)^{2}}{2 * 0.069^{2}}\right)}=0.001
$$

(c)

$$
x=0.5635 \mu \mathrm{~m}
$$

PART C

Answer any two full questions, each carries 20 marks.
7 a) Two advantages of LIGA process (2 marks). Explanation of LIGA (4 marks ,
Block diagram (2 marks). Commonly used chemical in each of the steps (0.5 x 4 $=2$ marks).
b) Explanation (3 marks), figures - 2 marks
c) Explanation (3 marks), figures - 2 marks
a) explanation (3 marks $\times 2=6$ marks), figures -2 marks $\times 2=4$ marks
b) Role of sacrificial layers (expln - 2 marks, figures 2 marks). examples of two sacrificial materials ($0.5 \times 2=1$ marks)
c) explanation (5 marks)

9 a) Explanation (5 marks), figures -3 marks. fabrication challenges associated with surface micromachining (2 marks).
b) explanation (3 marks $\times 2=6$ marks), figures -2 marks $\times 2=4$ marks

