APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2015
 Electronics \& Communication Engineering
 (VLSI \& Embedded Systems)
 04 EC6511- VLSI Design Automation
 Max. Marks : 60
 Duration: 3 Hours

PART A
Answer All Questions. All Questions Carry 3 marks each.

1. Define a 'minimum spanning tree'
2. List out the firing rules for a conditional node with proper diagrams
3. Briefly explain layout compaction
4. Differentiate standard cell placement and building block placement
5. List out the three ways in which a Rectilinear Steiner tree can be realized in standard cell layout
6. Define total channel density
7. List out three parameters that should be considered during local routing
8. Give the significance of 'doglegs' in channel routing

PART B
Answer All Questions. All Questions Carry 6 marks each.
9. a)

Calculate the cost of minimum spanning tree using Prim's algorithm
10. a)

Calculate shortest path between all pair of vertices using matrix multiplication modeling
11. a) Perform force directed scheduling from the data flow graph given below

Or
12. a) Perform resource based scheduling for the data flow graph given in Q .No. 11.Allocated resources are as follows :

Resource	Allocation
$*$	2
+	1
-	1
$<$	1

13. a)

Perform K-L Partitioning (pass-1) for the graph given above
Or
14. a) Illustrate any two layout compaction algorithm based on minimum distance between features
15. a) Intrepret any two techniques to perform constructive algorithms in placement

Or
16. a) Sketch floor plan tree, vertical and horizontal polar graph of the floor plan given below with suitable explanations

17. a) Find optimal solution using 1-Steiner heuristic method of rouing.The set of points P for which the Steiner tree should be constructed (a) and its Hanan points (b) are as follows

Or
18. a) Find shortest route from S to T using Lee's maze routing algorithm. Shaded region represents
obstacle .

19. a) Perform left edge channel routing algorithm from the vertical constrained graph given below

20. a) Illustrate two methods for minimization of via

