

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EE403

Course Name: DISTRIBUTED GENERATION AND SMART GRIDS

Max. Marks: 100

1 2 3

4

5

6

Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks.	Marks
Any four comparison(5mark)	(5)
Equations real and reactive powers (2mark)+ explanation (3 mark)	(5)
Smart meter	(2+3)
• Meter that has metering as well as communication abilities	
Features A DIV II ICAL ANA	
Provides data on energy usage to consumer	
• Sends data to utility fro peak-load requirements, load factor control etc.	
Better pricing information	
• Tariff options, DR rates, smart thermostat, remote connect/disconnect of	
users, appliance control etc.	
• Capability to regulate energy usage based on the information on dynamic	(5)
pricing	
• Can respond to utility signals to improve peak management capability	
 Automatic adjustments to respond to emergency situations 	
• Consumer can override all formerly programmed instructions from smart	
grid if necessary	
• Can shift power usage to optimal time for DGs	
Diagram-2, Explanation-3(Application requirements, Sensors, Actuators,	(5)
Controllers, Media, standards and protocols)	
• AMI-link between grid and consumer	(5)
Monitoring and control	
Market participation	
• Smart meters are employed	
Remote connection	

• Automatic data communication

7 8

• Helps in self-healing	
Equation -2 , explanation -3	(5)
Applications of cloud computing in smart grid	(5)

PART B Answer any two full questions, each carries 10 marks.

9	AC microgrid diagram(5mark), Explanation(5mark)	(10)
10	Block diagram and Operation of Single-Shaft and Split-Shaft Microturbines	(10)
	(5+5)	

11 a) Components of a Ultra capacitor(3). Advantages and disadvantages (2). (5)

b) Block diagram of flywheel energy storage (FES) system (3)+ working (2) (5)

PART C

Answer any two full questions, each carries 10 marks.

- 12 NIST Smart grid architecture figure
 - Consumer domain, Markets domain, Utility domain, Operations domain, Generation domain, Transmission domain, Distribution domain
 - NIST diagram (4) + Domains (3) + Explanation (3)

- Fast separation from the faulted feeder, Prevention of spurious separation, Non-fault separation, Separation from exporting Microgrids, Re-synchronisation (3)
- b) Load shaping Modification of load shape by decreasing the consumption during peak period and increasing the consumption during off-peak period (3)

Advantages (2)

- Flattening of load profile
- Improvement of efficiency
- Avoid the effects of intermittent generation
- Better use of base generating stations
- 14
 Load curve
 ------(4)

 Maximum demand = 40MW
 ------(1)

 Units generated per day = 655×10^3 kWh
 ------(1)

 Average load = 27.29×10^3 kW
 ------(2)

 Load factor = 68.2% ------(2)

PART D

Answer any two full questions, each carries 10 marks.

15 Feeder Automation -----(3)

Components -----(7)

- Remote Fault Indicators
- Smart Relays
- Automated Feeder Switches and reclosers
- Automated Capacitors
- Automated Voltage Regulators
- Automated Feeder Monitors
- Transformer Monitors
- 16 a) Diagram 3 marks, explanation- 4 marks
 - b) Advantages 3 marks
- List- 3 marks, explanation-7 marks
 (Sustained interruptions, Voltage regulation, Harmonics, Voltage sag, Operating conflicts, power quality disturbances)

