Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CS463

Course Name: DIGITAL IMAGE PROCESSING

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions, each carries 4 marks.	Marks						
1	What is meant by Moire patters and aliasing in imaging.							
2	Find the 4 order Hadamard Transform for the following image segment:							
	2 1 2 1							
	1 2 3 2							
	2 3 4 3							
	1 2 3 2							
3	Define Energy compaction? Explain how energy compaction of unitary	(4)						
_	transform useful in image processing							
4	Explain the following gray level transformations	(4)						
	a) Logarithmic							
	b) Power Law							
5	Differentiate between ideal low pass and high pass filter in frequency domain.							
6	How can order statistic filter be used for image enhancement?							
7	Write short note on 1) Line edge 2) Ramp edge							
8	Explain the significance of adaptive thresholding compared to global	(4)						
	thresholding							
9	Explain the following morphological operations with suitable examples	(4)						
	i) Closing							
	ii) Opening							
10	Briefly explain Fourier Descriptor.	(4)						
	PART B							

Answer any two full questions, each carries 9 marks.

11 a) Find the 4 order forward and inverse DFT for the following image segment:	(5)
---	-----

F

b) Explain any four properties of 2D Fourier transform. (4)

- 12 a) Illustrate and briefly explain the image formation model. Explain the (6) significance of sampling and quantization.
 - b) List out any one application each were image processing is used in Gamma Ray (3) imaging and Microwave Imaging.
- 13 a) What are the major components of an image processing system? (4)
 - b) Verify whether the DFT matrix is unitary or not for N=4. (5)

PART C Answer any two full questions, each carries 9 marks.

- 14 a) Illustrate and explain the steps in homomorphic filtering. (5)
 - b) Explain butterworth low pass and high pass filter for enhancement in frequency (4) domain.
- 15 a) Perform histogram equalization of the following 3 bit gray scale image whose (5) gray level distribution is given as follows:

Gray	0	1	2	3	4	5	6	7
level								
No. of	8	10	10	2	12	16	4	2
Pixels								

- b) In a given application an averaging mask is applied to input images to reduce (4) noise, and then a laplacian mask is applied to enhance small details. Would the result be the same if the order of these operations were reversed?
- 16 a) Explain the various sharpening filters used in spatial domain. (5)
 - b) What is meant by high boost filtering? Derive the mask used for the filter. (4)

PART D

Answer any two full questions, each carries 12 marks.

17 a) Apply opening and closing operation on the image sample A given below with (6) structuring element B

- b) Describe how boundary in image can be represented with chain code with an (6) example.
- 18 a) Explain Region splitting and merging algorithm with example (7)
 - b) Write short note on Prewitt, Robert's and Sobel edge detectors. (5)
- 19 a) Describe various thresholding based image segmentation methods. Explain any (8) one global threshold detection method.
 - b) Explain hit or miss transformation with an example. (4)
