APJ ABDUL KALAM TECHNOLOGICAL UNIVERSTTY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018
 Course Code: CE401
 Course Name: DESIGN OF STEEL STRUCTURES

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any two full questions, each carries 15 marks.
 Marks

1 a) Any 4 modes of failure with fig- $\mathbf{1 . 2 5}$ marks each - 5marks
b) Strength of bolt: Shear strength-2 marks, Bearing strength- $\mathbf{3}$ marks

Design strength of one bolt-1 mark
No of bolts-2 marks
Fig showing no, arrangement, pitch, and edge distance-2 marks
2 a) Any six features- $\mathbf{3}$ marks
b) Assume weld size $=5 \mathrm{~mm}$ (between max. and min. values)

Assume throat thickness $=3.5 \mathrm{~mm}$ (between max. and min. values)
Length of weld required $=1210 \mathrm{~mm}-5$ marks
Max. length which can be provided $=850 \mathrm{~mm}$
Balance to be provided by slot welds $=360 \mathrm{~mm}-\mathbf{2}$ marks
Let x be the length of one slot weld, $4 x=360, x=90 \mathrm{~mm}$, say $100 \mathrm{~mm}-2$
marks
Total length of weld provided $=1250 \mathrm{~mm}$
Strength of the weld $=835.782 \mathrm{kN}>800 \mathrm{kN}$, hence safe. - 2marks
Figure - 1 mark
a) Figure

1 mark

Concept of shear lag
b) Determination of Area required for one angle by using the formula.

1mark

$$
\begin{aligned}
\gamma_{m 0} & =1.1, \mathrm{f}_{\mathrm{y}}=250, \gamma_{m 1}=1.25 \\
T_{d g} & =A_{g} f_{y} / \gamma_{m 0} \quad \mathrm{Ag}=1980 \mathrm{~mm}^{2}
\end{aligned}
$$

Selection of suitable trial section from steel table with area more than $\left(1980 / 2=990 \mathrm{~mm}^{2}\right)$. List the properties of trial section from steel table.

1mark

Determination of Bolt Value for double shear As per section 10.3.3, 10.3.4 of IS 800 : 2007. 1mark

Determination of number of bolts $=$ Factored load $/$ Bolt Value 1mark

Check for Design strength due to yielding of cross section by using the formula $\quad>450 \mathrm{kN}$ 2marks

$$
T_{d g}=A_{g} f_{y} / \gamma_{m 0}
$$

Check for Design strength due to rupture of critical section by using the formula:

$$
\begin{gathered}
T_{d n}=0.9 A_{n c} f_{u} / \gamma_{m 1}+\beta A_{g o} f_{y} / \gamma_{m 0}>450 \mathrm{kN} \\
\beta=1.4-0.076(w / t)\left(f_{v} / f_{u}\right)\left(b_{s} / L_{c}\right) \leq\left(f_{u} \gamma_{m 0}\right) /\left(f_{y} \gamma_{m 1}\right) \quad 2.5 \mathrm{marks}
\end{gathered}
$$

Check for Design strength due to block shear (minimum of below) > 450 kN by using the two formulas :
2.5marks

$$
\begin{gathered}
A_{v g} f_{y} / \sqrt{3} \gamma_{m 0}+0.9 A_{m} f_{u} / \gamma_{m 1} \\
0.9 A_{v n} f_{u} / \sqrt{3} \gamma_{m 1}+A_{t g} f_{y} / \gamma_{m 0}
\end{gathered}
$$

Check for slenderness ratio $=1 / r_{\text {min }}<350$ (Table 3 of IS 800) 1mark

PART B

Answer any two full questions, each carries 15 marks.
a) Factored load

Area required \& selecting section- 3marks
Spacing and checking design strength-4marks
Design of lacing
Size of lacing- 4 marks
Check- 3marks
Connection- 1mark
a) Explain slab bases and gusseted base- 5marks
b) Factored load

Area required \& selecting section- 3marks
Moment at critical section
Finding minimum thickness required- 4marks
Connection design -3marks
a) Laterally restrained beam -2 marks, laterally unrestrained beams -2 marks
b) Factored bending moment and shear force-2 marks, section modulus-1 mark, selection of section and section properties-1 mark, section classification-1 mark, design bending strength and check-2 marks, check for shear- $\mathbf{1}$ mark, check for web buckling and web crippling-2 marks, check for deflection-1 mark.

PART C

 Answer any two full questions, each carries 20 marks.a) Basic wind speed (1)

Calculation of $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ (2 marks)
Calculation of basic wind pressure. (2)
b) Forces acting on the purlins. DL and LL calculation (2), wind load (2)

Factored bending moment and shear force (2 marks each)
Design of section (angle section or I section or Channel section) (4)
Check for BM and SF(2)
Check for Deflection. (1)
a) Dimensions of truss with line sketch - $\mathbf{1}$ mark

Calculation of nodal loads (WL)- $\mathbf{3}$ marks
Analysis of truss for DL+LL-3 marks
Analysis of truss for WL- $\mathbf{3}$ marks
Design Load combinations - 1mark
Design of top chord members ($\mathbf{2}$ marks)
Design of bottom chord members ($\mathbf{2}$ marks)
Design of web members (2 marks)
a) L/d (1) K (1) perm stress of wood from table IS 883(1) safe stress (1) safe load(1)
b) Limiting values for 3 cases ($\mathbf{1}$ mark each) and the general equation for deflection from IS 883 with different k values ($\mathbf{2}$ marks)
c) Max stress in steel (3) stress dg (2) MR of timber (2) steel (2) total MR (1)

