

Pages 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CE401

Course Name: DESIGN OF STEEL STRUCTURES

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Any 4 modes of failure with fig- 1.25 marks each – 5marks	(5)
	b)	Strength of bolt: Shear strength-2 marks, Bearing strength-3 marks	(10)
		Design strength of one bolt-1 mark	
		No of bolts- 2 marks	
		Fig showing no, arrangement, pitch, and edge distance-2 marks	
2	a)	Any six features- 3 marks	(3)
	b)	Assume weld size = 5mm (between max. and min. values) Assume throat thickness = 3.5 mm (between max. and min. values) Length of weld required = 1210 mm – 5 marks Max. length which can be provided = 850 mm Balance to be provided by slot welds = 360 mm – 2 marks Let x be the length of one slot weld, $4x = 360$, x=90mm, say 100 mm – 2 marks Total length of weld provided = 1250 mm Strength of the weld = 835.782 kN > 800 kN, hence safe. – 2marks Figure – 1 mark	(12)
3	a)	Figure 1 mark Concept of shear lag 2 marks	(3)

b) Determination of Area required for one angle by using the formula. (12) **1mark**

$$\gamma_{m0} = 1.1$$
, $f_y = 250$, $\gamma_{m1} = 1.25$
 $T_{dg} = A_g f_y / \gamma_{m0}$ Ag = 1980 mm²

Selection of suitable trial section from steel table with area more than $(1980/2 = 990 \text{mm}^2)$. List the properties of trial section from steel table. **1mark**

Determination of Bolt Value for double shear As per section 10.3.3, 10.3.4 of IS 800 : 2007. **1mark**

Determination of number of bolts = Factored load / Bolt Value 1mark

Check for Design strength due to yielding of cross section by using the formula > 450kN **2marks**

$$T_{dg} = A_{g} f_{y} / \gamma_{m0}$$

Check for Design strength due to rupture of critical section by using the formula:

$$T_{_{dn}} = 0.9A_{_{nc}} f_{_{u}} / \gamma_{_{m1}} + \beta A_{_{go}} f_{_{y}} / \gamma_{_{m0}} > 450 \text{ kN}$$

 $\beta = 1.4 - 0.076(w/t)(f_y/f_u)(b_y/L_c) \le (f_u\gamma_{m0})/(f_y\gamma_{m1})$ 2.5marks

Check for Design strength due to block shear (minimum of below) > 450 kN by using the two formulas : **2.5marks**

$$A_{yg}f_{y}/\sqrt{3}\gamma_{m0}+0.9A_{tm}f_{u}/\gamma_{m1}$$
$$0.9A_{yn}f_{u}/\sqrt{3}\gamma_{m1}+A_{tg}f_{y}/\gamma_{m0}$$

Check for slenderness ratio = $1/r_{min} < 350$ (Table 3 of IS 800) **1mark**

PART B

Answer any two full questions, each carries 15 marks.

4	a)	Factored load	(15)
		Area required & selecting section- 3marks	
		Spacing and checking design strength-4marks	
		Design of lacing	
		Size of lacing- 4 marks	
		Check- 3marks	
		Connection- 1mark	
5	a)	Explain slab bases and gusseted base- 5marks	(5)
	b)	Factored load	(10)
		Area required & selecting section- 3marks	
		Moment at critical section	
		Finding minimum thickness required- 4marks	
		Connection design -3marks	

Pages 3

6	a)	Laterally restrained beam -2 marks, laterally unrestrained beams -2	(4)
		marks	
	b)	Factored bending moment and shear force-2 marks, section modulus-1	(11)
		mark, selection of section and section properties-1 mark, section	
		classification-1 mark, design bending strength and check-2 marks,	
		check for shear-1 mark, check for web buckling and web crippling-2	
		marks, check for deflection-1 mark.	
		PART C Answer any two full questions, each carries 20 marks.	
7	a)	Basic wind speed (1)	(5)
		Calculation of K ₁ ,K ₂ ,K ₃ (2 marks)	
		Calculation of basic wind pressure. (2)	
	b)	Forces acting on the purlins. DL and LL calculation (2), wind load (2)	(15)
		Factored bending moment and shear force (2 marks each)	
		Design of section (angle section or I section or Channel section) (4)	
		Check for BM and SF(2)	
		Check for Deflection. (1)	
8	a)	Dimensions of truss with line sketch - 1 mark	(20)
		Calculation of nodal loads (DL+LL) - 3 marks	
		Calculation of nodal loads (WL)- 3 marks	
		Analysis of truss fo <mark>r DL+L</mark> L - <mark>3 marks</mark>	
		Analysis of truss for WL- 3 marks	
		Design Load combinations - 1mark	
		Design of top chord members (2 marks)	
		Design of bottom chord members (2 marks)	
		Design of web members (2 marks)	
9	a)	L/d (1) K (1) perm stress of wood from table IS 883(1) safe stress (1)	(5)
		safe load(1)	
	b)	Limiting values for 3 cases (1 mark each) and the general equation for	(5)
		deflection from IS 883 with different k values (2 marks)	
	c)	Max stress in steel (3) stress dg (2) MR of timber (2) steel (2) total MR	(10)
		(1)	
