

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme of Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key **SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018**

Course Code: CS405

Course Name: COMPUTER SYSTEM ARCHITECTURE

Max. Marks: 100

Duration: 3 Hours

		PART A	
		Answer all questions, each carries 4 marks.	Marks
1		Architecture - 2 marks	(4)
		Explanation - 2 marks	
2		Flow chart - 2marks	(4)
		Explanation - 2 marks	
3		Any four differences - 4 marks	
4		Cross bar network - explanation - 2 marks	(4)
		Multiport memory - explanation - 2 marks	
5		Process migration - example with diagram - 2 marks	(4)
		I/O - example with diagram - 2marks	
6		Store and forward routing – explanation - 2 marks	(4)
		Wormhole routing - explanation - 2 marks	
7		Three hazards- with example - 4 marks	(4)
8		$\tau = 9 \text{ ns}$	(4)
		frequency = $1/\tau$ =111.11 MHz	
9		Static dataflow computers - 2marks	
		Dynamic dataflow computers - 2marks	
10		Four policies - 4 marks	(4)
		PART B	
11 .	-)	Answer any two full questions, each carries 9 marks.	(4)
11 a	a)	Four classes with diagram - 4 marks	(4)
t)	Average CPI = $\frac{35000 \times 1 + 20000 \times 2 + 15000 \times 2 + 6000 \times 2}{35000 + 20000 + 15000 + 6000}$	(5)
		= 1.54 cycles/instruction 2 marks	
		MIPS = $\frac{f}{CPI \times 10^6}$ = $\frac{40 \times 10^6}{1.54 \times 10^6}$ = 25.97 <i>MIPS</i> 2 marks	
		Execution Time $-\frac{I_c \times CPI}{f} = \frac{(35000 + 20000 + 15000 + 6000) \times 1.54}{40 \times 10^6} = 2.93 \text{msec1}$ mark	
		()r	

R	7954	TPL ABDOLL BALAM	Pages 3		
		$T = \frac{I_c}{MIPS \times 10^6} = \frac{35000 + 20000 + 15000 + 6000}{25.97 \times 10^6} = 2.93 \text{ msec}$			
12	a)	Hit Ratio - Definition + formula - 1.5 marks	(3)		
		Effective access time – Definition + formula - 1.5 marks			
	b)	=h1t1+(1-h1)h2t2+(1-h1)(1-h2)h3t3	(6)		
		=0.98t1+0.018t2+0.002t3			
		=8.04 μ sec. – 3marks			
		Total memory cost -			
		Total cost=c1s1+c2s2+c3s3			
		=			
		=\$15000 3 marks			
13	a)	Explanation - 3 marks	(3)		
	b)	VLIW architecture + explanation - 4 marks	(6)		
		VLIW pipelining with diagram - 2marks			
		PART C Answer any two full questions, each carries 9 marks.			
14	a)	Transition diagram with all correct transitions– 3 marks	(3)		
	b)	Network design - 2 mark	(6)		
		Routing + conflict - 3 marks			
		Blocking and Non blocking - 1 mark			
15	a)	Synchronous Model with diagram - 1.5 marks (3)			
		Asynchronous Model with diagram - 1.5 marks			
	b)	i) Forbidden latencies - 3	(6)		
		Collision vector - 100 - 1mark			
		ii) Transition diagram			
		4 ⁺ 100 1 ⁺ 1 ⁺ 101 1 ⁺ 101 2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺ 101 2 ⁺ - 2marks			
		iii) Simple cycles- 4, 2, (2,4), (1,4), (1,1,4)			
		Greedy cycles - 2, (1,1,4) - 1 mark			

iv) optimal constant latency cycle -2

R7954				Pages 3						
		MAL-2	- 1 mark							
		v) Throughput $=\frac{1}{2 \times 20 ns}$	= 25 <i>MOPS</i> - 1mark							
16	a)	Explanation	- 2 marks	(4)						
		Directory structures	- 2 marks							
	b)	Dimension order routing	- 2 marks	(5)						
		Routing								
		$r=s \oplus d = 0010 \oplus 1002$	1 = 1011							
		routing- 0010->0011->00	01->1001 - 2 marks							
		Intermediate nodes	- 0011,0001 - 1 mark							
	PART D									
17	a)		<i>vo full questions, each carries 12 marks.</i> - 3 marks	(5)						
		Explanation	- 2 marks							
	b)	In order with example	- 3.5 marks	(7)						
		Out of order with example	e – 3.5 marks							
18	a)	Any three techniques	- 9 marks	(9)						
	b)	Fine grain parallelism-exp	planation - 3 marks	(3)						
19	a)	Static branch prediction	- 3marks	(6)						
		Dynamic branch prediction - 3marks								
	b)	Architecture	- 3 marks	(6)						
		Explanation	- 3 marks							
